cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A245666 Number of permutations of length n with longest increasing subsequence of length 10.

Original entry on oeis.org

1, 100, 5941, 275705, 11110464, 410474625, 14353045401, 484748595081, 16029615164446, 523952747921310, 17044414451764396, 554568496974014588, 18113988555378974988, 595604303387826752023, 19755504320385394380715, 662039152774864970449891
Offset: 10

Views

Author

Alois P. Heinz, Jul 28 2014

Keywords

Crossrefs

Column k=10 of A047874.

Programs

  • Maple
    h:= proc(l) local n; n:= nops(l); add(i, i=l)! /mul(mul(1+l[i]-j
        +add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n) end:
    g:= (n, i, l)-> `if`(n=0 or i=1, h([l[], 1$n])^2, `if`(i<1, 0,
                    add(g(n-i*j, i-1, [l[], i$j]), j=0..n/i))):
    a:= n-> g(n-10, min(n-10, 10), [10]):
    seq(a(n), n=10..30);

A026845 Sum_{mu a partition of n} (f^mu/n!)^{-2} where f^mu is the number of standard Young tableaux of shape mu.

Original entry on oeis.org

1, 8, 81, 1424, 32152, 1144937, 53178768, 3360267976, 268737034880, 26735641360265, 3222856389284352, 463078022054303432, 78131995260953112576, 15295767841794798044432, 3438384401028669096232665, 879589866427669147125523584, 254053056142392070125392290952
Offset: 1

Views

Author

Bruce E. Sagan, Apr 06 2002

Keywords

Comments

Arises from counting coverings of a genus g=2 Riemann surface - expansion of generating function A_g(q) = sum_{n>=0} a_{n,g} q^n where a_{n,g} = sum_{mu a partition of n} (f^mu/n!)^{2-2g}; note that A_0(q) = e^q and A_1(q) = prod_{i>=1} 1/(1-q^i).

Crossrefs

Cf. A047874. - Wouter Meeussen, Sep 30 2010

Programs

  • Mathematica
    (* version 4.0 *) Needs["DiscreteMath`Combinatorica`"]; Table[Tr[(n!/ (NumberOfTableaux /@ Partitions[n]))^2],{n,20}] (* Wouter Meeussen, Sep 30 2010 *)

Extensions

Terms 8 to 20 added by Wouter Meeussen, Sep 30 2010

A366503 Triangle read by rows: T(n,k) = number of permutations of (1, 2, ..., n) with longest monotonic subsequence of length k (1<=k<=n).

Original entry on oeis.org

1, 0, 2, 0, 4, 2, 0, 4, 18, 2, 0, 0, 86, 32, 2, 0, 0, 306, 362, 50, 2, 0, 0, 882, 3242, 842, 72, 2, 0, 0, 1764, 24564, 12210, 1682, 98, 2, 0, 0, 1764, 163872, 161158, 32930, 3026, 128, 2, 0, 0, 0, 985032, 1969348, 592652, 76562, 5042, 162, 2
Offset: 1

Views

Author

Douglas Boffey, Oct 12 2023

Keywords

Examples

			Triangle begins:
  1;
  0, 2;
  0, 4,    2;
  0, 4,   18,     2;
  0, 0,   86,    32,     2;
  0, 0,  306,   362,    50,    2;
  0, 0,  882,  3242,   842,   72,  2;
  0, 0, 1764, 24564, 12210, 1682, 98, 2;
  ...
The T(4, 2) = 4 permutations are: 2,1,4,3; 2,4,1,3; 3,1,4,2; 3,4,1,2.
		

Crossrefs

Row sums are A000142.
Cf. A047874.

A331883 The number of permutations in the symmetric group S_n in which it is possible to find two disjoint increasing subsequences each with length equal to the length of the longest increasing subsequence of the permutation.

Original entry on oeis.org

0, 1, 1, 5, 26, 132, 834, 6477, 56242
Offset: 1

Views

Author

Ildar Gainullin, Jan 30 2020

Keywords

Comments

Only permutations whose longest increasing subsequence is at most n/2 need to be considered.

Examples

			a(3) = 1 because the only permutation whose longest increasing subsequence is 1 is [3,2,1] and this contains two disjoint increasing subsequences of length 1.
The a(4) = 5 permutations are:
  [2,1,4,3],
  [2,4,1,3],
  [3,1,4,2],
  [3,4,1,2],
  [4,3,2,1].
		

Crossrefs

A380611 Irregular triangle read by rows: T(r,c) is the product of the number of standard Young tableaux (A117506) and the number of semistandard Young tableaux (A262030) for partitions of r.

Original entry on oeis.org

1, 1, 3, 1, 10, 16, 1, 35, 135, 40, 45, 1, 126, 896, 875, 756, 375, 96, 1, 462, 5250, 10206, 8400, 2450, 14336, 2800, 875, 1701, 175, 1, 1716, 28512, 90552, 74250, 65856, 257250, 48000, 74088, 55566, 102900, 8100, 10976, 5488, 288, 1, 6435, 147147, 686400, 567567, 931392, 3244032, 606375, 194040, 2910600, 1448832, 2673000, 202125, 666792, 846720, 1029000, 491520, 19845, 24696, 65856, 14400, 441, 1
Offset: 0

Views

Author

Wouter Meeussen, Jan 28 2025

Keywords

Comments

Partitions are generated in reverse lexicographic order.
Remark that A262030 uses Abramowitz-Stegun (A-St) order.
Sum of row r equals r^r for r > 0 (Robinson-Schensted correspondence).

Examples

			Triangle begins:
    1;
    1;
    3,    1;
   10,   16,     1;
   35,  135,    40,   45,    1;
  126,  896,   875,  756,  375,    96,    1;
  462, 5250, 10206, 8400, 2450, 14336, 2800, 875, 1701, 175, 1;
  ...
Fourth row is 1*35, 3*45, 2*20, 3*15, 1*1 with sum 256 = 4^4.
		

Crossrefs

Row sums give A000312.
Row lengths give A000041.
Leftmost column gives A088218.

Programs

  • Mathematica
    Needs["Combinatorica`"];
    hooklength[par_?PartitionQ]:=Table[Count[par,q_/;q>=j]+1-i+par[[i]]-j,{i,Length[par]},{j,par[[i]]}];
    countSYT[par_?PartitionQ]:=Tr[par]!/Times@@Flatten[hooklength[par]];
    content[par_?PartitionQ]:=Table[j-i,{i,Length[par]},{j,par[[i]]}];
    countSSYT[par_?PartitionQ,t_Integer_]:=Times@@((t+Flatten[content[par]])/Flatten[hooklength[par]]);
    Table[countSYT[par] countSSYT[par,n],{n,8},{par,IntegerPartitions[n]}]
Previous Showing 21-25 of 25 results.