A158432
Number of permutations of 1..n containing the relative rank sequence { 45312 } at any spacing.
Original entry on oeis.org
1, 26, 458, 6996, 101072, 1438112, 20598112, 300892896, 4521034917, 70286670034, 1135485759114, 19121776482564, 336412530327804, 6191800556586104, 119301546930406184, 2406376964044265344, 50786085223779295344, 1120447461653440780128, 25810064637612342838624
Offset: 5
-
h:= proc(l) local n; n:=nops(l); add(i, i=l)! /mul(mul(1+l[i]-j
+add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
end:
g:= (n, i, l)-> `if`(n=0 or i=1, h([l[], 1$n])^2, `if`(i<1, 0,
add(g(n-i*j, i-1, [l[], i$j]), j=0..n/i))):
a:= n-> n! -g(n, 4, []):
seq(a(n), n=5..25); # Alois P. Heinz, Jul 05 2012
# second Maple program
a:= proc(n) option remember; `if`(n<5, 0, `if`(n=5, 1,
((132-142*n-301*n^2-35*n^3+25*n^4+n^5)*a(n-1)
-2*(10*n^3+33*n^2-181*n-2)*(n-1)^2*a(n-2)
+64*(n-2)^2*(n-1)^3*a(n-3))/ ((n+4)*(n-5)*(n+3)^2)))
end:
seq(a(n), n=5..30); # Alois P. Heinz, Sep 26 2012
-
h[l_] := With[{n = Length[l]}, Sum[i, {i, l}]!/Product[Product[1+l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
g[n_, i_, l_] := If[n == 0 || i === 1, h[Join[l, Array[1 &, n]]]^2, If[i < 1, 0, Sum[g[n - i*j, i - 1, Join[l, Array[i &, j]]], {j, 0, n/i}]]];
a[n_] := n! - g[n, 4, {}];
Table[a[n], {n, 5, 25}] (* Jean-François Alcover, Jun 19 2018, after Alois P. Heinz's first program *)
A072167
T_10(n) in the notation of Bergeron et al., u_10(n) in the notation of Gessel: Related to Young tableaux of bounded height.
Original entry on oeis.org
1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916799, 479001478, 6227012074, 87177809092, 1307651456625, 20921799763626, 355647213494682, 6400805686152436, 121585553747301448, 2430677026538811240
Offset: 1
Jesse Carlsson (j.carlsson(AT)physics.unimelb.edu.au), Jun 29 2002
- Vaclav Kotesovec, Table of n, a(n) for n = 1..500
- F. Bergeron and F. Gascon, Counting Young tableaux of bounded height, J. Integer Sequences, Vol. 3 (2000), #00.1.7.
- Shalosh B. Ekhad, Nathaniel Shar, and Doron Zeilberger, The number of 1...d-avoiding permutations of length d+r for SYMBOLIC d but numeric r, arXiv:1504.02513 [math.CO], 2015.
- Ira M. Gessel, Symmetric functions and P-recursiveness, J. Combin. Theory Ser. A 53 (1990), no. 2, 257-285.
- Nathaniel Shar, Experimental methods in permutation patterns and bijective proof, PhD Dissertation, Mathematics Department, Rutgers University, May 2016.
-
h:= proc(l) local n; n:=nops(l); add(i, i=l)! / mul(mul(1+l[i]-j
+add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
end:
g:= proc(n, i, l) option remember;
`if`(n=0, h(l)^2, `if`(i<1, 0, `if`(i=1, h([l[], 1$n])^2,
g(n, i-1, l)+ `if`(i>n, 0, g(n-i, i, [l[], i])))))
end:
a:= n-> g(n, 10, []):
seq(a(n), n=0..25); # Vaclav Kotesovec, Sep 10 2014, after Alois P. Heinz
-
RecurrenceTable[{-7372800*(-4 + n)^2*(-3 + n)^2*(-2 + n)^2*(-1 + n)^2*(15 + 2*n)*a[-5 + n] + 256*(-3 + n)^2*(-2 + n)^2*(-1 + n)^2*(11018760 + 4743323*n + 577824*n^2 + 21076*n^3)*a[-4 + n]-8*(-2 + n)^2*(-1 + n)^2*(2488711560 + 2208119423*n + 580006399*n^2 + 64938154*n^3 + 3273732*n^4 + 61160*n^5)*a[-3 + n] + 4*(-1 + n)^2*(8002290720 + 21962910556*n + 10433770264*n^2 + 2088552609*n^3 + 215646686*n^4 + 12084237*n^5 + 349536*n^6 + 4092*n^7)*a[-2 + n]-2*(-45705600000 + 64584000000*n + 68412531600*n^2 + 22314826244*n^3 + 3672058745*n^4 + 350428790*n^5 + 20286926*n^6 + 704088*n^7 + 13497*n^8 + 110*n^9)*a[-1 + n] + (9 + n)^2*(16 + n)^2*(21 + n)^2*(24 + n)^2*(25 + n)*a[n]==0,a[1]==1,a[2]==2,a[3]==6,a[4]==24,a[5]==120},a,{n,1,20}] (* Vaclav Kotesovec, Sep 10 2014 *)
A141824
Antidiagonals of table A047888 (which counts longest increasing subsequences and pattern avoidances).
Original entry on oeis.org
1, 2, 4, 9, 24, 75, 269, 1095, 5039, 26084, 150356, 952526, 6553011, 48553418, 385693800, 3277413802, 29741002168, 287555932433, 2952769116993, 32079033571080, 367336668735826, 4419518218479215, 55733223965845539, 735448682261126767, 10142738983005750681
Offset: 1
We can write A141824(n) = 1 2 4 9 24 ... because A047888 begins
1;
1, 1;
1, 2, 1;
1, 5, 2, 1;
1, 14, 6, 2, 1;
etc.
A256200
Number of permutations in S_n that avoid the pattern 42351.
Original entry on oeis.org
1, 1, 2, 6, 24, 119, 694, 4580, 33252, 260204, 2161930, 18861307, 171341565, 1610345257, 15579644765, 154541844196, 1566713947713, 16190122718865, 170171678529883, 1816001425551270, 19646035298044543, 215179180467834605, 2383465957654163227, 26673704385975326866
Offset: 0
- Anthony Guttmann, Table of n, a(n) for n = 0..27
- Nathan Clisby, Andrew R. Conway, Anthony J. Guttmann, Yuma Inoue, Classical length-5 pattern-avoiding permutations, arXiv:2109.13485 [math.CO], 2021.
- Zvezdelina Stankova-Frenkel and Julian West, A new class of Wilf-equivalent permutations, arXiv:math/0103152 [math.CO], 2001.
-
avoid[n_, pat_] := Module[{p1 = pat[[1]], p2 = pat[[2]], p3 = pat[[3]], p4 = pat[[4]], p5 = pat[[5]], lseq = {}, i, p,
lpat = Subsets[(n + 1) - Range[n], {Length[pat]}],
psn = Permutations[Range[n]]},
For[i = 1, i <= Length[lpat], i++,
p = lpat[[i]];
AppendTo[lseq, Select[psn, MemberQ[#, {_, p[[p1]], _, p[[p2]], _, p[[p3]], _, p[[p4]], _, p[[p5]], _}, {0}] &]];
]; n! - Length[Union[Flatten[lseq, 1]]]];
Table[avoid[n, {4, 2, 3, 5, 1}], {n, 0, 8}] (* Robert Price, Mar 27 2020 *)
A224248
Number of permutations in S_n containing exactly one increasing subsequence of length 5.
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 20, 270, 3142, 34291, 364462, 3844051, 40632886, 432715409, 4655417038, 50667480496, 558143676522, 6223527776874, 70228214538096, 801705888742781, 9254554670121572, 107975393459449243, 1272651313142352772, 15145990284267530992
Offset: 0
- B. Nakamura and D. Zeilberger, Using Noonan-Zeilberger Functional Equations to enumerate (in Polynomial Time!) Generalized Wilf classes, Adv. in Appl. Math. 50 (2013), 356-366.
A248900
Number of permutations of [n] avoiding patterns 2431 and 54321.
Original entry on oeis.org
1, 1, 2, 6, 23, 102, 492, 2492, 13003, 69172, 372963, 2031174, 11148948, 61588814, 342068774, 1908740089, 10694374242, 60137305751, 339276548456, 1919787554118, 10892575241125, 61957028188350, 353224194632459, 2018076850631391, 11552829351121139, 66259093178740462
Offset: 0
a(4) = 23 because all permutations of length 4 except 2431 lie in this set.
A256196
Number of permutations in S_n that avoid the pattern 31524.
Original entry on oeis.org
1, 1, 2, 6, 24, 119, 694, 4579, 33216, 259401, 2147525, 18632512, 167969934, 1563027614, 14937175825, 146016423713, 1455402205257, 14753501614541, 151783381341695, 1582029822426003, 16681492660789425, 177726496203056670, 1911230701872865231, 20726637978574528119
Offset: 0
- Anthony Guttmann, Table of n, a(n) for n = 0..25
- Nathan Clisby, Andrew R. Conway, Anthony J. Guttmann, Yuma Inoue, Classical length-5 pattern-avoiding permutations, arXiv:2109.13485 [math.CO], 2021.
- Zvezdelina Stankova-Frenkel and Julian West, A new class of Wilf-equivalent permutations, arXiv:math/0103152 [math.CO], 2001.
-
avoid[n_, pat_] := Module[{p1 = pat[[1]], p2 = pat[[2]], p3 = pat[[3]], p4 = pat[[4]], p5 = pat[[5]], lseq = {}, i, p,
lpat = Subsets[(n + 1) - Range[n], {Length[pat]}],
psn = Permutations[Range[n]]},
For[i = 1, i <= Length[lpat], i++,
p = lpat[[i]];
AppendTo[lseq, Select[psn, MemberQ[#, {_, p[[p1]], _, p[[p2]], _, p[[p3]], _, p[[p4]], _, p[[p5]], _}, {0}] &]];
]; n! - Length[Union[Flatten[lseq, 1]]]];
Table[avoid[n, {3, 1, 5, 2, 4}], {n, 0, 8}] (* Robert Price, Mar 27 2020 *)
A256197
Number of permutations in S_n that avoid the pattern 35214.
Original entry on oeis.org
1, 1, 2, 6, 24, 119, 694, 4579, 33218, 259483, 2149558, 18672277, 168648090, 1573625606, 15093309024, 148223240022, 1485673163882, 15159644212775, 157142812302992, 1651865171372967, 17582693993265148, 189269329080075275, 2058215511081891400, 22589841589522026553
Offset: 0
- Anthony Guttmann, Table of n, a(n) for n = 0..26
- Nathan Clisby, Andrew R. Conway, Anthony J. Guttmann, Yuma Inoue, Classical length-5 pattern-avoiding permutations, arXiv:2109.13485 [math.CO], 2021.
- Zvezdelina Stankova-Frenkel and Julian West, A new class of Wilf-equivalent permutations, arXiv:math/0103152 [math.CO], 2001.
-
avoid[n_, pat_] := Module[{p1 = pat[[1]], p2 = pat[[2]], p3 = pat[[3]], p4 = pat[[4]], p5 = pat[[5]], lseq = {}, i, p,
lpat = Subsets[(n + 1) - Range[n], {Length[pat]}],
psn = Permutations[Range[n]]},
For[i = 1, i <= Length[lpat], i++,
p = lpat[[i]];
AppendTo[lseq, Select[psn, MemberQ[#, {_, p[[p1]], _, p[[p2]], _, p[[p3]], _, p[[p4]], _, p[[p5]], _}, {0}] &]];
]; n! - Length[Union[Flatten[lseq, 1]]]];
Table[avoid[n, {3, 5, 2, 1, 4}], {n, 0, 8}] (* Robert Price, Mar 27 2020 *)
A256198
Number of permutations in S_n that avoid the pattern 35124.
Original entry on oeis.org
1, 1, 2, 6, 24, 119, 694, 4580, 33249, 260092, 2159381, 18815124, 170605392, 1599499163, 15427796984, 152487271455, 1539554179950, 15836801521762, 165625811815111, 1757953168747511, 18908510233855411, 205838673911323648, 2265393020812413370, 25182471016157568626
Offset: 0
- Anthony Guttmann, Table of n, a(n) for n = 0..27
- Nathan Clisby, Andrew R. Conway, Anthony J. Guttmann, Yuma Inoue, Classical length-5 pattern-avoiding permutations, arXiv:2109.13485 [math.CO], 2021.
- Zvezdelina Stankova-Frenkel and Julian West, A new class of Wilf-equivalent permutations, arXiv:math/0103152 [math.CO], 2001.
-
avoid[n_, pat_] := Module[{p1 = pat[[1]], p2 = pat[[2]], p3 = pat[[3]], p4 = pat[[4]], p5 = pat[[5]], lseq = {}, i, p,
lpat = Subsets[(n + 1) - Range[n], {Length[pat]}],
psn = Permutations[Range[n]]},
For[i = 1, i <= Length[lpat], i++,
p = lpat[[i]];
AppendTo[lseq, Select[psn, MemberQ[#, {_, p[[p1]], _, p[[p2]], _, p[[p3]], _, p[[p4]], _, p[[p5]], _}, {0}] &]];
]; n! - Length[Union[Flatten[lseq, 1]]]];
Table[avoid[n, {3, 5, 1, 2, 4}], {n, 0, 8}] (* Robert Price, Mar 27 2020 *)
A256199
Number of permutations in S_n that avoid the pattern 53124.
Original entry on oeis.org
1, 1, 2, 6, 24, 119, 694, 4580, 33252, 260202, 2161837, 18858720, 171285237, 1609282391, 15561356705, 154246419725, 1562151687940, 16121960812335, 169178376076607, 1801800479418116, 19446010522240384, 212394673429250090, 2345064355131025130, 26148064110299271293
Offset: 0
- Anthony Guttmann, Table of n, a(n) for n = 0..25
- Nathan Clisby, Andrew R. Conway, Anthony J. Guttmann, Yuma Inoue, Classical length-5 pattern-avoiding permutations, arXiv:2109.13485 [math.CO], 2021.
- Zvezdelina Stankova-Frenkel and Julian West, A new class of Wilf-equivalent permutations, arXiv:math/0103152 [math.CO], 2001.
-
avoid[n_, pat_] := Module[{p1 = pat[[1]], p2 = pat[[2]], p3 = pat[[3]], p4 = pat[[4]], p5 = pat[[5]], lseq = {}, i, p,
lpat = Subsets[(n + 1) - Range[n], {Length[pat]}],
psn = Permutations[Range[n]]},
For[i = 1, i <= Length[lpat], i++,
p = lpat[[i]];
AppendTo[lseq, Select[psn, MemberQ[#, {_, p[[p1]], _, p[[p2]], _, p[[p3]], _, p[[p4]], _, p[[p5]], _}, {0}] &]];
]; n! - Length[Union[Flatten[lseq, 1]]]];
Table[avoid[n, {5, 3, 1, 2, 4}], {n, 0, 8}] (* Robert Price, Mar 27 2020 *)
Comments