cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A249896 a(n+1) is next smallest square not divisible by 10 beginning with a(n), initial term is 6.

Original entry on oeis.org

6, 64, 64009, 6400960036, 640096003602877347904, 640096003602877347904912233550482787380625, 6400960036028773479049122335504827873806251020537411455326101704116338781035920283225
Offset: 1

Views

Author

Derek Orr, Nov 08 2014

Keywords

Comments

a(11) has 1374 digits, a(12) has 2749, a(13) has 5499, a(14) has 10998. - Robert Israel, Nov 25 2020

Crossrefs

Programs

  • Maple
    R:= 6: x:= 6: s:= 2:
    for iter from 1 while length(x) < 1000 do
      for d from 1 do
       if d::even then sp:= 1+ 10^(d/2)*s
       else
         sp:= ceil(sqrt(10^d*x));
         if sp mod 10 = 0 then sp:=sp+1; fi
       fi;
       if sp^2 < (x+1)*10^d then
         x:= sp^2; s:= sp; R:= R, x; break
       fi
      od;
    od:
    R; # Robert Israel, Nov 25 2020
  • PARI
    a(n)=k=n; s=1; while(s<5*10^7, if(s%10, if(s^2\(10^(#Str(s^2)-#Str(k)))==k, print1(s^2, ", "); k=s^2)); s++)
    a(7)
    
  • Python
    def f(x):
      print(x, end=', ')
      n = x
      s = 1
      while s < 10**7:
        if s % 10:
          S = str(s**2)
          if S.startswith(str(n)):
            print(s**2, end=', ')
            n = s**2
        s += 1
    f(7)

A249897 a(n+1) is next smallest square not divisible by 10 beginning with a(n), initial term is 7.

Original entry on oeis.org

7, 729, 729316, 7293164743396, 72931647433968832639882896, 72931647433968832639882896319584064899663299793041401
Offset: 1

Views

Author

Derek Orr, Nov 08 2014

Keywords

Crossrefs

Programs

  • PARI
    a(n)=k=n; s=1; while(s<5*10^7, if(s%10, if(s^2\(10^(#Str(s^2)-#Str(k)))==k, print1(s^2, ", "); k=s^2)); s++)
    a(7)
    
  • Python
    def f(x):
      print(x, end=', ')
      n = x
      s = 1
      while s < 10**7:
        if s % 10:
          S = str(s**2)
          if S.startswith(str(n)):
            print(s**2, end=', ')
            n = s**2
        s += 1
    f(7)

Extensions

a(5)-a(6) corrected by Hiroaki Yamanouchi, Nov 17 2014

A048560 a(n+1)^2 is next smallest nontrivial square beginning with a(n)^2, initial square is 4.

Original entry on oeis.org

2, 7, 222, 70203, 22200137858, 2220013785800000000001, 7020300000101169666284501016647428364760574, 22200137858000000000010000000000000000000001726952547826525063393038550959517040374473
Offset: 0

Views

Author

Patrick De Geest, May 15 1999

Keywords

Comments

Next terms are 171 and 343 digits long.

Crossrefs

Cf. A048559.

A249893 a(n+1) is next smallest square not divisible by 10 beginning with a(n), initial term is 2.

Original entry on oeis.org

2, 25, 256, 256036, 2560361612769, 256036161276932002260000001, 256036161276932002260000001607597862784080913990785121
Offset: 1

Views

Author

Derek Orr, Nov 08 2014

Keywords

Comments

a(12) has 1717 digits. - Michael S. Branicky, Feb 25 2021

Crossrefs

Programs

  • PARI
    a(n)=k=n;s=1;while(s<5*10^7,if(s%10,if(s^2\(10^(#Str(s^2)-#Str(k)))==k,print1(s^2,", ");k=s^2));s++)
    a(2)
    
  • Python
    def f(x):
      print(x,end=', ')
      n = x
      s = 1
      while s < 10**7:
        if s % 10:
          S = str(s**2)
          if S.startswith(str(n)):
            print(s**2,end=', ')
            n = s**2
        s += 1
    f(2)
    
  • Python
    from math import isqrt
    def anext(an):
      lo, hi = an*10, an*10 + 9
      while True:
        found = False
        if isqrt(hi)**2 > lo: return (isqrt(lo)+1)**2
        lo, hi = lo*10, hi*10 + 9
    n, an = 1, 2
    for n in range(2, 17):
      an = anext(an)
      print(n, an) # Michael S. Branicky, Feb 25 2021

A249898 a(n+1) is next smallest square not divisible by 10 beginning with a(n), initial term is 8.

Original entry on oeis.org

8, 81, 81225, 8122515625, 812251562541751472569, 812251562541751472569881528811450814530084
Offset: 1

Views

Author

Derek Orr, Nov 08 2014

Keywords

Crossrefs

Programs

  • PARI
    a(n)=k=n; s=1; while(s<5*10^7, if(s%10, if(s^2\(10^(#Str(s^2)-#Str(k)))==k, print1(s^2, ", "); k=s^2)); s++)
    a(8)
    
  • Python
    def f(x):
      print(x, end=', ')
      n = x
      s = 1
      while s < 10**7:
        if s % 10:
          S = str(s**2)
          if S.startswith(str(n)):
            print(s**2, end=', ')
            n = s**2
        s += 1
    f(8)

A249804 a(n+1) is the next smallest nontrivial cube beginning with a(n), initial term is 4.

Original entry on oeis.org

4, 4096, 409675763483, 4096757634832457594649749511342547903
Offset: 1

Views

Author

Derek Orr, Dec 03 2014

Keywords

Comments

a(5) is a 110-digit number. - Jon E. Schoenfield, Dec 04 2014

Crossrefs

Programs

  • PARI
    a(n)=k=n; s=1; while(s<10^7, if(s%10, if(s^3\(10^(#Str(s^3)-#Str(k)))==k, print1(s^3, ", "); k=s^3)); s++)
    a(4)
  • Python
    def f(x):
      n = x
      s = 1
      while s < 10**7:
        if s % 10:
          S = str(s**3)
          if S.startswith(str(n)):
            print(s**3, end=', ')
            n = s**3
        s += 1
    f(4)
    

Extensions

a(4) from Jon E. Schoenfield, Dec 04 2014

A249834 a(n+1) is the next smallest nontrivial cube beginning with a(n), initial term is 7.

Original entry on oeis.org

7, 729, 7290099019, 72900990191475181426079596544
Offset: 1

Views

Author

Derek Orr, Dec 03 2014

Keywords

Comments

a(5) is an 87-digit number. - Jon E. Schoenfield, Dec 04 2014

Crossrefs

Programs

  • PARI
    a(n)=k=n; s=1; while(s<10^7, if(s%10, if(s^3\(10^(#Str(s^3)-#Str(k)))==k, print1(s^3, ", "); k=s^3)); s++)
    a(7)
  • Python
    def f(x):
      n = x
      s = 1
      while s < 10**7:
        if s % 10:
          S = str(s**3)
          if S.startswith(str(n)):
            print(s**3, end=', ')
            n = s**3
        s += 1
    f(7)
    

Extensions

a(4) from Jon E. Schoenfield, Dec 04 2014

A249837 a(n+1) is the next smallest nontrivial cube beginning with a(n), initial term is 9.

Original entry on oeis.org

9, 9261, 92615351886784, 9261535188678457128255779014690172977343833, 926153518867845712825577901469017297734383369607525414854584903918819898290730346512973206455943454340951813592133138664220381927
Offset: 1

Views

Author

Derek Orr, Dec 03 2014

Keywords

Comments

a(7) has 1163 digits. - Robert Israel, Dec 04 2014

Crossrefs

Programs

  • Maple
    nextterm:= proc(x) local d,s,t;
       for d from 1 do
         s:= traperror(ceil((x*10^d+1)^(1/3)));
         while not type(s,integer) do
            Digits:= Digits *2;
            s:= traperror(ceil((x*10^d+1)^(1/3)));
         od:
         t:= traperror(floor(((x+1)*10^d-1)^(1/3)));
         while not type(t,integer) do
            Digits:= Digits *2;
            t:= traperror(floor(((x+1)*10^d-1)^(1/3)));
         od:
         if s <= t then return s^3 fi;
       od:
    end proc:
    a[1]:= 9;
    for n from 2 to 6 do a[n]:= nextterm(a[n-1]) od; # Robert Israel, Dec 04 2014
  • PARI
    a(n)=k=n; s=1; while(s<10^7, if(s%10, if(s^3\(10^(#Str(s^3)-#Str(k)))==k, print1(s^3, ", "); k=s^3)); s++)
    a(9)
  • Python
    def f(x):
      n = x
      s = 1
      while s < 10**7:
        if s % 10:
          S = str(s**3)
          if S.startswith(str(n)):
            print(s**3, end=', ')
            n = s**3
        s += 1
    f(9)
    

Extensions

a(4) and a(5) from Robert Israel, Dec 04 2014
Previous Showing 11-18 of 18 results.