cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A117207 Number triangle read by rows: T(n,k) = Sum_{j=0..n-k} C(n+j,j+k)*C(n-j,k).

Original entry on oeis.org

1, 3, 1, 10, 7, 1, 35, 31, 13, 1, 126, 121, 81, 21, 1, 462, 456, 381, 181, 31, 1, 1716, 1709, 1583, 1058, 358, 43, 1, 6435, 6427, 6231, 5055, 2605, 645, 57, 1, 24310, 24301, 24013, 21661, 14605, 5785, 1081, 73, 1, 92378, 92368, 91963, 87643, 70003, 38251, 11791
Offset: 0

Views

Author

Paul Barry, Mar 02 2006

Keywords

Comments

Row sums are A037965(n+1).
Second column is A048775. - Paul Barry, Oct 01 2010
First column is A001700. - Dan Uznanski, Jan 23 2012
The number of different ordered partitions of n+1 into n+1 bins (as with A001700), such that more than k bins are nonempty. - Dan Uznanski, Jan 23 2012
Second diagonal is A002061. - Franklin T. Adams-Watters, Jan 24 2012

Examples

			Triangle begins:
     1,
     3,    1,
    10,    7,    1,
    35,   31,   13,    1,
   126,  121,   81,   21,   1,
   462,  456,  381,  181,  31,  1,
  1716, 1709, 1583, 1058, 358, 43, 1
		

Programs

  • Mathematica
    Table[Sum[Binomial[n+j,j+k]Binomial[n-j,k],{j,0,n-k}],{n,0,10},{k,0,n}]//Flatten (* Harvey P. Dale, Apr 23 2016 *)
  • PARI
    T(n,k)=sum(j=0,n-k, binomial(n+j,j+k)*binomial(n-j,k))
    T(n,k)=binomial(2*n+1,n+1)-(n+1)*sum(j=1,k, binomial(n,j-1)^2/j)
    A117207(k)=my(n=sqrtint(2*k-sqrtint(2*k))); T(n,k-n*(n+1)/2) \\ M. F. Hasler, Jan 25 2012

Formula

T(n,k) = C(2*n+1,n+1) - (n+1)*Sum_{j=1..k} (Product_{i=0..j-2} (n-i)^2)/((j-1)!*j!).
T(n,k) = [x^(n-k)](1+x)^(n-k)*F(-n-1,-n,1,x/(1+x)). - Paul Barry, Oct 01 2010
T(n,k) = C(2*n+1,n+1) - (n+1)*Sum_{j=1..k} C(n,j-1)^2/j. - M. F. Hasler, Jan 25 2012

A147984 Column 5 of A144512.

Original entry on oeis.org

1, 2431, 4061871, 7528988476, 15467641899285, 34155922905682979, 79397199549271412737, 191739533381111401455478, 476872353039366288373555323
Offset: 0

Views

Author

N. J. A. Sloane, May 13 2009

Keywords

Crossrefs

A371036 a(n) is the number of ways to place n indistinguishable balls into n distinguishable boxes with at least one box remaining empty and not all balls placed in a single box.

Original entry on oeis.org

0, 0, 6, 30, 120, 455, 1708, 6426, 24300, 92367, 352704, 1352065, 5200286, 20058285, 77558744, 300540178, 1166803092, 4537567631, 17672631880, 68923264389, 269128937198, 1052049481837, 4116715363776, 16123801841525, 63205303218850, 247959266474025, 973469712824028
Offset: 1

Views

Author

Enrique Navarrete, Mar 08 2024

Keywords

Comments

a(n) is also the number of weak compositions of n into n parts in which at least one part is zero and the composition does not contain a single nonzero part.

Examples

			a(4)=30 since 4 can be written as 3+1+0+0, 0+3+1+0, etc. (12 such compositions); 2+2+0+0 (6 such compositions); 2+1+1+0 (12 such compositions).
		

Crossrefs

Formula

a(n) = binomial(2n-1,n)-n-1, n > 1; a(1)=0.
a(n) = A048775(n-1)-1, n > 1.
a(n) = A001700(n-1)-(n+1), n > 1.
Previous Showing 11-13 of 13 results.