cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 57 results. Next

A050436 Third-order composites.

Original entry on oeis.org

16, 21, 25, 26, 28, 33, 36, 38, 39, 42, 48, 49, 50, 52, 55, 56, 57, 60, 64, 68, 69, 70, 72, 74, 77, 78, 80, 84, 87, 88, 90, 93, 94, 95, 98, 100, 104, 105, 106, 110, 111, 115, 117, 118, 119, 121, 122, 124, 125, 126, 130, 133, 135, 138, 140, 141, 145, 146, 147
Offset: 1

Views

Author

Michael Lugo (mlugo(AT)thelabelguy.com), Dec 22 1999

Keywords

Examples

			C(C(C(8))) = C(C(15)) = C(25) = 38. So 38 is in the sequence.
		

Crossrefs

Programs

  • Maple
    C := remove(isprime,[$4..1000]): seq(C[C[C[C[n]]]],n=1..100);
  • Mathematica
    Nest[Values@ KeySelect[MapIndexed[First@ #2 -> #1 &, #], CompositeQ] &, Select[Range@ 150, CompositeQ], 2] (* Michael De Vlieger, Jul 22 2017 *)

Formula

Let C(n) be the n-th composite number, with C(1)=4. Then these are numbers C(C(C(n))).

Extensions

More terms from Asher Auel Dec 15 2000

A246681 Permutation of natural numbers: a(0) = 1, a(1) = 2, a(p_n) = A003961(a(n)), a(c_n) = 2*a(n), where p_n = n-th prime = A000040(n), c_n = n-th composite number = A002808(n), and A003961(n) shifts the prime factorization of n one step towards larger primes.

Original entry on oeis.org

1, 2, 3, 5, 4, 7, 6, 9, 10, 8, 14, 11, 12, 15, 18, 20, 16, 25, 28, 21, 22, 24, 30, 27, 36, 40, 32, 50, 56, 33, 42, 13, 44, 48, 60, 54, 72, 45, 80, 64, 100, 35, 112, 75, 66, 84, 26, 63, 88, 96, 120, 108, 144, 81, 90, 160, 128, 200, 70, 49, 224, 99, 150, 132, 168, 52, 126, 55, 176, 192, 240, 39
Offset: 0

Views

Author

Antti Karttunen, Sep 01 2014

Keywords

Comments

Note the indexing: the domain starts from 0, while the range excludes zero.
Iterating a(n) from n=0 gives the sequence: 1, 2, 3, 5, 7, 9, 8, 10, 14, 18, 28, 56, 128, 156, 1344, 16524, 2706412500, ..., which is the only one-way cycle of this permutation.
Because 2 is the only even prime, it implies that, apart from a(0)=1 and a(2)=3, odd numbers occur in odd positions only (along with many even numbers that also occur in odd positions). This in turn implies that there exists an infinite number of infinite cycles like (... 648391 31 13 15 20 22 30 42 112 196 1350 ...) which contain just one odd composite (A071904). Apart from 9 which is in that one-way cycle, each odd composite occurs in a separate infinite two-way cycle, like 15 in the example above.

Crossrefs

Inverse: A246682.
Similar or related permutations: A163511, A246377, A246379, A246367, A245821.

Formula

a(0) = 1, a(1) = 2, and for n > 1, if A010051(n) = 1 [i.e. when n is a prime], a(n) = A003961(a(A000720(n))), otherwise a(n) = 2*a(A065855(n)).
Other identities.
For all n >= 0, the following holds:
a(A007097(n)) = A000040(n+1). [Maps the iterates of primes to primes].
A078442(a(n)) > 0 if and only if n is in A007097. [Follows from above].
For all n >= 1, the following holds:
a(n) = A163511(A246377(n)).
A000035(a(n)) = A010051(n). [Maps primes to odd numbers > 1, and composites to even numbers, in some order. Permutations A246377 & A246379 have the same property].
A055396(a(n)) = A049076(n). [An "order of primeness" is mapped to the index of the smallest prime dividing n].

A250247 Permutation of natural numbers: a(1) = 1, a(n) = A083221(a(A055396(n)),A246277(n)).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 27, 22, 23, 24, 25, 26, 21, 28, 29, 30, 31, 32, 39, 34, 35, 36, 37, 38, 63, 40, 41, 42, 43, 44, 33, 46, 47, 48, 49, 50, 75, 52, 53, 54, 65, 56, 99, 58, 59, 60, 61, 62, 57, 64, 95, 66, 67, 68, 111, 70, 71, 72, 103, 74, 51, 76, 77, 78, 79, 80, 45, 82
Offset: 1

Views

Author

Antti Karttunen, Nov 17 2014

Keywords

Comments

The first 7-cycle occurs at: (33 39 63 57 99 81 45), which is mirrored at the cycle (137 167 307 269 523 419 197), consisting of primes (p_33, p_39, p_63, ...).

Examples

			As a(21) = 27, and A000040(21) = 73 and A000040(27) = 103, a(73) = 103.
		

Crossrefs

Inverse: A250248.
Differs from its inverse A250248 for the first time at n = 33, where a(33) = 39, while A250248(33) = 45.
Differs from the "vanilla version" A249817 for the first time at n=73, where a(73) = 103, while A249817(73) = 73.
Differs from "doubly recursed" version A250249 for the first time at n=42, where a(42) = 42, while A250249(42) = 54, thus the first prime where they get different values is p_42 = 181, where a(181) = 181, while A250249(181) = 251 = p_54.

Formula

a(1) = 1, a(n) = A083221(a(A055396(n)),A246277(n)).
Other identities. For all n >= 1:
a(A005843(n)) = A005843(n). [Fixes even numbers].
a(p_n) = p_{a(n)}, or equally, a(n) = A049084(a(A000040(n))). [Restriction to primes induces the same sequence].
A078442(a(n)) = A078442(n), A049076(a(n)) = A049076(n). [Preserves the "order of primeness of n"].

A304486 Number of inequivalent leaf-colorings of the unlabeled rooted tree with Matula-Goebel number n.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 2, 3, 2, 2, 1, 4, 2, 4, 2, 5, 2, 4, 3, 4, 4, 2, 2, 7, 2, 5, 3, 9, 2, 5, 1, 7, 2, 4, 4, 9, 4, 7, 5, 7, 2, 11, 4, 4, 4, 4, 2, 12, 7, 4, 4, 11, 5, 7, 2, 16, 7, 5, 2, 11, 4, 2, 9, 11, 5, 5, 3, 9, 4, 11
Offset: 1

Views

Author

Gus Wiseman, Aug 17 2018

Keywords

Examples

			Inequivalent representatives of the a(52) = 11 colorings of the tree (oo(o(o))) are the following.
  (11(1(1)))
  (11(1(2)))
  (11(2(1)))
  (11(2(2)))
  (11(2(3)))
  (12(1(1)))
  (12(1(2)))
  (12(1(3)))
  (12(3(1)))
  (12(3(3)))
  (12(3(4)))
		

Crossrefs

A059981 Order of compositeness for the n-th composite number.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 3, 2, 1, 3, 1, 2, 3, 4, 1, 3, 1, 2, 4, 2, 1, 3, 4, 5, 2, 4, 1, 2, 1, 3, 5, 3, 2, 4, 1, 5, 6, 3, 1, 5, 1, 2, 3, 2, 1, 4, 6, 4, 3, 5, 1, 2, 6, 7, 4, 2, 1, 6, 1, 2, 3, 4, 3, 2, 1, 5, 7, 5, 1, 4, 1, 6, 2, 3, 7, 8, 1, 5, 3, 2, 1, 7, 2, 3, 4
Offset: 1

Views

Author

Robert G. Wilson v, Mar 06 2001

Keywords

Comments

Let c(k) = k-th composite number, let S(c) = S(c(k)) = k, the subscript of c; a(n) = order of compositeness of c(n) = 1+m where m is largest number such that S(S(..S(c(n))...)) with m S's is a composite.
Number of steps in the composite index chain for the n-th composite. - Daniel Forgues, Sep 28 2012

Examples

			16 is 9th composite number, so S(16)=9, 9 is 4th composite, so S(S(16))=4, 4 is first composite number, so S(S(S(16)))=1, not a composite number. Thus a(9)=3.
4 is the first composite number, so S(4)=1, not a composite number. Thus a(1)=1.
		

Crossrefs

Cf. A049076, A022449 (composites with compositeness 1).

Programs

  • Mathematica
    Composite[ n_Integer ] := (k = n + PrimePi[ n ] + 1; While[ k != n + PrimePi[ k ] + 1, k++ ]; k); CompositePi[ n_Integer ] := (n - 1 - PrimePi[ n ]); Attributes[ Composite ] = Attributes[ CompositePi ] = Listable; Table[ c = 1; k = CompositePi[ Composite[ n ] ]; While[ ! (PrimeQ[ k ] || k == 1), k = CompositePi[ k ]; c++ ]; c, {n, 100} ]

A246682 Permutation of natural numbers: a(1) = 0, a(2) = 1, and for n > 1, a(2n) = nthcomposite(a(n)), a(2n-1) = nthprime(a(A064989(2n-1))), where nthprime = A000040, nthcomposite = A002808, and A064989(n) shifts the prime factorization of n one step towards smaller primes.

Original entry on oeis.org

0, 1, 2, 4, 3, 6, 5, 9, 7, 8, 11, 12, 31, 10, 13, 16, 127, 14, 709, 15, 19, 20, 5381, 21, 17, 46, 23, 18, 52711, 22, 648391, 26, 29, 166, 41, 24, 9737333, 858, 71, 25, 174440041, 30, 3657500101, 32, 37, 6186
Offset: 1

Views

Author

Antti Karttunen, Sep 01 2014

Keywords

Comments

Note the indexing: the domain starts from 1, while the range includes also zero.
Has an infinite number of infinite cycles. See comments at A246681.

Crossrefs

Inverse: A246681.
Similar or related permutations: A246376, A246378, A243071, A246368, A064216, A246380.

Programs

Formula

a(1) = 0, a(2) = 1, and for n > 1, a(2n) = nthcomposite(a(n)), a(2n-1) = nthprime(a(A064989(2n-1))), where nthprime = A000040, nthcomposite = A002808, and A064989(n) shifts the prime factorization of n one step towards smaller primes.
As a composition of related permutations:
a(n) = A246378(A243071(n)).
Other identities.
For all n >= 1 the following holds:
a(A000040(n)) = A007097(n-1). [Maps primes to the iterates of primes].
A049076(a(A000040(n))) = n. [Follows from above].
For all n > 1 the following holds:
A010051(a(n)) = A000035(n). [Maps odd numbers larger than one to primes, and even numbers to composites, in some order. Permutations A246378 & A246380 have the same property].

A050438 Fourth-order composites.

Original entry on oeis.org

26, 33, 38, 39, 42, 49, 52, 55, 56, 60, 68, 69, 70, 74, 77, 78, 80, 84, 88, 93, 94, 95, 98, 100, 105, 106, 110, 115, 118, 119, 121, 124, 125, 126, 130, 133, 138, 140, 141, 145, 146, 152, 154, 155, 156, 159, 160, 162, 164, 165, 170, 174, 176, 180, 183, 184
Offset: 1

Views

Author

Michael Lugo (mlugo(AT)thelabelguy.com), Dec 22 1999

Keywords

Examples

			C(C(C(C(8)))) = C(C(C(15))) = C(C(25)) = C(38) = 55. So 55 is in the sequence.
		

Crossrefs

Programs

  • Maple
    C := remove(isprime,[$4..1000]): seq(C[C[C[C[n]]]],n=1..100);

Formula

Let C(n) be the n-th composite number, with C(1)=4. Then these are numbers C(C(C(C(n)))).

Extensions

More terms from Asher Auel Dec 15 2000

A135044 a(1)=1, then a(c) = p and a(p) = c, where c = T_c(r,k) and p = T_p(r,k), and where T_p contains the primes arranged in rows by the prime index chain and T_c contains the composites arranged in rows by the order of compositeness. See Formula.

Original entry on oeis.org

1, 4, 9, 2, 16, 7, 6, 13, 3, 19, 26, 17, 8, 23, 41, 5, 12, 67, 10, 29, 59, 37, 14, 83, 179, 11, 43, 331, 20, 47, 39, 109, 277, 157, 53, 431, 22, 1063, 31, 191, 15, 2221, 27, 61, 211, 71, 30, 599, 1787, 919, 241, 3001, 35, 73, 8527, 127, 1153, 79, 21, 19577, 44, 89, 283
Offset: 1

Views

Author

Katarzyna Matylla, Feb 11 2008

Keywords

Comments

Exchanges primes with composites, primeth primes with composith composites, etc.
Exchange the k-th prime of order j with the k-th composite of order j and vice versa.
Self-inverse permutation of positive integers.
If n is the composite number A236536(r,k), then a(n) is the corresponding prime A236542(r,k) at the same position (r,k). Vice versa, if n is the prime A236542(r,k), then a(n) is the corresponding composite A236536(r,k) at the same position. - Andrew Weimholt, Jan 28 2014
The original name for this entry did not produce this sequence, but instead A236854, which differs from this permutation for the first time at n=8, where A236854(8)=23, while here a(8)=13. - Antti Karttunen, Feb 01 2014

Examples

			From _Andrew Weimholt_, Jan 29 2014: (Start)
More generally, takes the primes organized in an array according to the sieving process described in the Fernandez paper:
        Row[1](n) = 2, 7, 13, 19, 23, ...
        Row[2](n) = 3, 17, 41, 67, 83, ...
        Row[3](n) = 5, 59, 179, ...
        Row[4](n) = 11, 277, ...
        Lets call this  T_p (n, k)
Also take the composites organized in a similar manner, except we use "composite" numbered positions in our sieve:
        Row[1](n) = 4, 6, 8, 10, 14, 20, 22, ...
        Row[2](n) = 9, 12, 15, 18, 24, ...
        Row[3](n) = 16, 21, 25, ...
        Lets call this T_c (n, k)
If we now take the natural numbers and swap each number (except for 1) with the number which holds the same spot in the other array, then we get the sequence: 1, 4, 9, 2, 16, 7, 6, 13, with for example a(8) = 13 (13 holds the same position in the 'prime' table as 8 does in the 'composite' table). (End)
		

Crossrefs

Programs

  • Maple
    A135044 := proc(n)
        if n = 1 then
            1;
        elif isprime(n) then
            idx := -1 ;
            for r from 1 do
                for c from 1 do
                    if A236542(r,c) = n then
                        idx := [r,c] ;
                    end if;
                    if A236542(r,c) >= n then
                        break;
                    end if;
                end do:
                if type(idx,list)  then
                    break;
                end if;
            end do:
            A236536(r,c) ;
        else
            idx := -1 ;
            for r from 1 do
                for c from 1 do
                    if A236536(r,c) = n then
                        idx := [r,c] ;
                    end if;
                    if A236536(r,c) >= n then
                        break;
                    end if;
                end do:
                if type(idx,list)  then
                    break;
                end if;
            end do:
            A236542(r,c) ;
        end if;
    end proc: # R. J. Mathar, Jan 28 2014
  • Mathematica
    Composite[n_Integer] := Block[{k = n + PrimePi@n + 1}, While[k != n + PrimePi@k + 1, k++ ]; k]; Compositeness[n_] := Block[{c = 1, k = n}, While[ !(PrimeQ@k || k == 1), k = k - 1 - PrimePi@k; c++ ]; c]; Primeness[n_] := Block[{c = 1, k = n}, While[ PrimeQ@k, k = PrimePi@k; c++ ]; c];
    ckj[k_, j_] := Select[ Table[Composite@n, {n, 10000}], Compositeness@# == j &][[k]]; pkj[k_, j_] := Select[ Table[Prime@n, {n, 3000}], Primeness@# == j &][[k]]; f[0]=0; f[1] = 1;
    f[n_] := If[ PrimeQ@ n, pn = Primeness@n; ckj[ Position[ Select[ Table[ Prime@ i, {i, 150}], Primeness@ # == pn &], n][[1, 1]], pn], cn = Compositeness@n; pkj[ Position[ Select[ Table[ Composite@ i, {i, 500}], Compositeness@ # == cn &], n][[1, 1]], cn]]; Array[f, 64] (* Robert G. Wilson v *)

Formula

a(1)=1, a(A236536(r,k))=A236542(r,k), a(A236542(r,k))=A236536(r,k)

Extensions

Edited, corrected and extended by Robert G. Wilson v, Feb 18 2008
Name corrected by Andrew Weimholt, Jan 29 2014

A250248 Permutation of natural numbers: a(1) = 1, a(n) = A246278(a(A055396(n)),A078898(n)).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 27, 22, 23, 24, 25, 26, 21, 28, 29, 30, 31, 32, 45, 34, 35, 36, 37, 38, 33, 40, 41, 42, 43, 44, 81, 46, 47, 48, 49, 50, 75, 52, 53, 54, 125, 56, 63, 58, 59, 60, 61, 62, 39, 64, 55, 66, 67, 68, 135, 70, 71, 72, 103, 74, 51, 76, 77, 78, 79, 80, 99, 82, 83
Offset: 1

Views

Author

Antti Karttunen, Nov 17 2014

Keywords

Crossrefs

Inverse: A250247.
Similar permutations: A250250 for even more recursed variant of A249818.
Differs from the "vanilla version" A249818 for the first time at n=73, where a(73) = 108, while A249818(73) = 73.

Formula

a(1) = 1, a(n) = A246278(a(A055396(n)), A078898(n)).
Other identities. For all n >= 1:
a(A005843(n)) = A005843(n). [Fixes even numbers].
a(p_n) = p_{a(n)}, or equally, a(n) = A049084(a(A000040(n))). [Restriction to primes induces the same sequence].
A078442(a(n)) = A078442(n), A049076(a(n)) = A049076(n). [Preserves the "order of primeness of n"].

A064812 Smallest prime p such that the infinite sequence {p, p'=2p-1, p''=2p'-1, ...} begins with a string of exactly n primes.

Original entry on oeis.org

5, 3, 2, 2131, 1531, 33301, 16651, 15514861, 857095381, 205528443121, 1389122693971, 216857744866621, 758083947856951, 107588900851484911, 69257563144280941
Offset: 1

Views

Author

David Terr, Oct 21 2002

Keywords

Comments

Chains of length n of nearly doubled primes.
Smallest prime beginning a complete Cunningham chain of length n of the second kind. (For the first kind see A005602.) - Jonathan Sondow, Oct 30 2015

Examples

			a(3) = 2 because 2 is the smallest prime such that the sequence {2, 3, 5, 9, ...} begins with exactly 3 primes, where each term in the sequence is twice the preceding term minus 1.
		

Crossrefs

Previous Showing 31-40 of 57 results. Next