Original entry on oeis.org
5381, 2269733, 17624813, 50728129, 77557187, 131807699, 259336153, 368345293, 440817757, 563167303, 751783477, 1107276647, 1170710369, 1367161723, 1760768239, 2062666783, 2323114841, 2458721501, 2621760397, 2860139341
Offset: 1
Cf.
A049076,
A007821,
A049078,
A049079,
A049080,
A049081,
A058322,
A058324,
A058326,
A058327,
A058328,
A093046,
A006450.
Original entry on oeis.org
52711, 37139213, 326851121, 997525853, 1559861749, 2724711961, 5545806481, 8012791231, 9672485827, 12501968177, 16917026909, 25366202179, 26887732891, 31621854169, 41192432219, 48596930311, 55022031709, 58379844161
Offset: 1
Cf.
A049076,
A007821,
A049078,
A049079,
A049080,
A049081,
A058322,
A058324,
A058325,
A058327,
A058328,
A093046,
A006450.
Original entry on oeis.org
648391, 718064159, 7069067389, 22742734291, 36294260117, 64988430769, 136395369829, 200147986693, 243504973489, 318083817907, 435748987787, 664090238153, 705555301183, 835122557939, 1099216100167, 1305164025929
Offset: 1
Cf.
A049076,
A007821,
A049078,
A049079,
A049080,
A049081,
A058322,
A058324,
A058325,
A058326,
A058328,
A093046,
A006450.
-
Nest[ Prime, Select[ Range[30], !PrimeQ[ # ] &], 10] (* Robert G. Wilson v, Mar 15 2004 *)
A236542
Array T(n,k) read along descending antidiagonals: row n contains the primes with n steps in the prime index chain.
Original entry on oeis.org
2, 7, 3, 13, 17, 5, 19, 41, 59, 11, 23, 67, 179, 277, 31, 29, 83, 331, 1063, 1787, 127, 37, 109, 431, 2221, 8527, 15299, 709, 43, 157, 599, 3001, 19577, 87803, 167449, 5381, 47, 191, 919, 4397, 27457, 219613, 1128889, 2269733, 52711
Offset: 1
The array starts:
2, 7, 13, 19, 23, 29, 37, 43, 47, 53,...
3, 17, 41, 67, 83, 109, 157, 191, 211, 241,...
5, 59, 179, 331, 431, 599, 919, 1153, 1297, 1523,...
11, 277, 1063, 2221, 3001, 4397, 7193, 9319,10631,12763,...
31, 1787, 8527,19577,27457,42043,72727,96797,112129,137077,...
-
A236542 := proc(n,k)
option remember ;
if n = 1 then
A007821(k) ;
else
ithprime(procname(n-1,k)) ;
end if:
end proc:
for d from 2 to 10 do
for k from d-1 to 1 by -1 do
printf("%d,",A236542(d-k,k)) ;
end do:
end do:
-
A007821 = Prime[Select[Range[15], !PrimeQ[#]&]];
T[n_, k_] := T[n, k] = If[n == 1, If[k <= Length[A007821], A007821[[k]], Print["A007821 must be extended"]; Abort[]], Prime[T[n-1, k]]];
Table[T[n-k+1, k], {n, 1, 9}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Apr 16 2020 *)
A050436
Third-order composites.
Original entry on oeis.org
16, 21, 25, 26, 28, 33, 36, 38, 39, 42, 48, 49, 50, 52, 55, 56, 57, 60, 64, 68, 69, 70, 72, 74, 77, 78, 80, 84, 87, 88, 90, 93, 94, 95, 98, 100, 104, 105, 106, 110, 111, 115, 117, 118, 119, 121, 122, 124, 125, 126, 130, 133, 135, 138, 140, 141, 145, 146, 147
Offset: 1
Michael Lugo (mlugo(AT)thelabelguy.com), Dec 22 1999
C(C(C(8))) = C(C(15)) = C(25) = 38. So 38 is in the sequence.
-
C := remove(isprime,[$4..1000]): seq(C[C[C[C[n]]]],n=1..100);
-
Nest[Values@ KeySelect[MapIndexed[First@ #2 -> #1 &, #], CompositeQ] &, Select[Range@ 150, CompositeQ], 2] (* Michael De Vlieger, Jul 22 2017 *)
A064960
The prime then composite recurrence; a(2n) = a(2n-1)-th prime and a(2n+1) = a(2n)-th composite and a(1) = 1.
Original entry on oeis.org
1, 2, 6, 13, 22, 79, 108, 593, 722, 5471, 6290, 62653, 69558, 876329, 951338, 14679751, 15692307, 289078661, 305618710, 6588286337, 6908033000, 171482959009, 178668550322, 5040266614919, 5225256019175, 165678678591359, 171068472492228, 6039923990345039
Offset: 1
Cf.
A007097,
A006508 &
A064961, see also
A057450,
A057451,
A057452,
A057453,
A057456 &
A057457 and
A049076,
A049077,
A049078,
A049079,
A049080 &
A049081.
-
Composite[n_Integer] := FixedPoint[n + PrimePi[ # ] + 1 &, n + PrimePi[n] + 1]; a = {1}; b = 1; Do[ If[ !PrimeQ[b], b = Prime[b], b = Composite[b]]; a = Append[a, b], {n, 1, 23}]; a
-
from functools import cache
from sympy import prime, composite
@cache
def A064960(n): return 1 if n == 1 else composite(A064960(n-1)) if n % 2 else prime(A064960(n-1)) # Chai Wah Wu, Jan 01 2022
A064961
Composite-then-prime recurrence; a(2n) = a(2n-1)-th composite and a(2n+1) = a(2n)-th prime and a(1) = 1.
Original entry on oeis.org
1, 4, 7, 14, 43, 62, 293, 366, 2473, 2892, 26317, 29522, 344249, 376259, 5429539, 5831545, 101291779, 107457490, 2198218819, 2310909505, 54720307351, 57128530327, 1543908890351, 1603146693999, 48871886538151, 50527531769529, 1720466016680911, 1772475453490311
Offset: 1
Cf.
A007097,
A006508 &
A064960, see also
A057450,
A057451,
A057452,
A057453,
A057456 &
A057457 and
A049076,
A049077,
A049078,
A049079,
A049080 &
A049081.
-
Composite[n_Integer] := FixedPoint[n + PrimePi[ # ] + 1 &, n + PrimePi[n] + 1]; a = {1, 4}; b = 4; Do[ If[ !PrimeQ[b], b = Prime[b], b = Composite[b]]; a = Append[a, b], {n, 1, 23}]; a
a(24)-a(26) corrected and a(27)-a(28) added by
Chai Wah Wu, Aug 22 2018
Original entry on oeis.org
3657500101, 12055296811267, 156740126985437, 575411103069067, 966399998477597, 1841803943951113, 4176603711876241, 6373890505436101, 7910004791442043, 10613343313176589, 15000987504638299, 23825707567607467, 25462803625208449, 30634679101122821, 41400950264534519, 49969246522326097
Offset: 1
Cf.
A049076,
A006450,
A114537,
A007821,
A049078,
A049079,
A049080,
A049081,
A058322,
A058324,Cf.
A058325,
A058326,
A058327,
A058328,
A093046,
A283459.
Original entry on oeis.org
88362852307, 392654585611999, 5519908106212193, 21034688742654437, 35843152090509943, 69532764058102673, 161191749822468689, 248761474969923757, 310467261969020581, 419776921940182991, 598644471430113247, 962125183414225879, 1029970322316321083, 1244984735583648473, 1695313841631390713
Offset: 1
Cf.
A049076,
A006450,
A114537,
A007821,
A049078,
A049079,
A049080,
A049081,
A058322,
A058324,
A058325,
A058326,
A058327,
A058328,
A093046,
A283458.
A318554
a(n) is the smallest prime number having order of primeness = prime(n).
Original entry on oeis.org
3, 5, 31, 709, 9737333, 3657500101, 2586559730396077, 4123221751654370051, 28785866289100396890228041
Offset: 1
The sequence of primes with order of primeness F(p) = prime(1) = 2 begins 3,17,41,67,...
so a(1)=3. Likewise, F(p) = prime(2) = 3 begins 5,59,179,... so a(2)=5.
Comments