cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A058325 Primes for which A049076(p) = 9.

Original entry on oeis.org

5381, 2269733, 17624813, 50728129, 77557187, 131807699, 259336153, 368345293, 440817757, 563167303, 751783477, 1107276647, 1170710369, 1367161723, 1760768239, 2062666783, 2323114841, 2458721501, 2621760397, 2860139341
Offset: 1

Views

Author

Robert G. Wilson v, Dec 12 2000

Keywords

Crossrefs

Programs

  • Mathematica
    Nest[ Prime, Select[ Range[30], !PrimeQ[ # ] &], 8] (* Robert G. Wilson v, Mar 15 2004 *)

Formula

a(n) = A000040(A058324(n)). - R. J. Mathar, Jul 07 2012

A058326 Primes for which A049076(p) = 10.

Original entry on oeis.org

52711, 37139213, 326851121, 997525853, 1559861749, 2724711961, 5545806481, 8012791231, 9672485827, 12501968177, 16917026909, 25366202179, 26887732891, 31621854169, 41192432219, 48596930311, 55022031709, 58379844161
Offset: 1

Views

Author

Robert G. Wilson v, Dec 12 2000

Keywords

Crossrefs

Programs

  • Mathematica
    Nest[ Prime, Select[ Range[30], !PrimeQ[ # ] &], 9] (* Robert G. Wilson v, Mar 15 2004 *)

Formula

a(n) = A000040(A058325(n)). - R. J. Mathar, Jul 07 2012

A058327 Primes for which A049076(p) = 11.

Original entry on oeis.org

648391, 718064159, 7069067389, 22742734291, 36294260117, 64988430769, 136395369829, 200147986693, 243504973489, 318083817907, 435748987787, 664090238153, 705555301183, 835122557939, 1099216100167, 1305164025929
Offset: 1

Views

Author

Robert G. Wilson v, Dec 12 2000

Keywords

Crossrefs

Programs

  • Mathematica
    Nest[ Prime, Select[ Range[30], !PrimeQ[ # ] &], 10] (* Robert G. Wilson v, Mar 15 2004 *)

Formula

a(n) = A000040(A058326(n)). - R. J. Mathar, Jul 07 2012

A236542 Array T(n,k) read along descending antidiagonals: row n contains the primes with n steps in the prime index chain.

Original entry on oeis.org

2, 7, 3, 13, 17, 5, 19, 41, 59, 11, 23, 67, 179, 277, 31, 29, 83, 331, 1063, 1787, 127, 37, 109, 431, 2221, 8527, 15299, 709, 43, 157, 599, 3001, 19577, 87803, 167449, 5381, 47, 191, 919, 4397, 27457, 219613, 1128889, 2269733, 52711
Offset: 1

Views

Author

R. J. Mathar, Jan 28 2014

Keywords

Comments

Row n contains the primes A000040(j) for which A049076(j) = n.

Examples

			The array starts:
    2,    7,   13,   19,   23,   29,   37,   43,   47,   53,...
    3,   17,   41,   67,   83,  109,  157,  191,  211,  241,...
    5,   59,  179,  331,  431,  599,  919, 1153, 1297, 1523,...
   11,  277, 1063, 2221, 3001, 4397, 7193, 9319,10631,12763,...
   31, 1787, 8527,19577,27457,42043,72727,96797,112129,137077,...
		

Crossrefs

Cf. A007821 (row 1), A049078 (row 2), A049079 (row 3), A007097 (column 1), A058010 (diagonal), A057456 - A057457 (columns), A135044, A236536.

Programs

  • Maple
    A236542 := proc(n,k)
        option remember ;
        if n = 1 then
            A007821(k) ;
        else
            ithprime(procname(n-1,k)) ;
        end if:
    end proc:
    for d from 2 to 10 do
        for k from d-1 to 1 by -1 do
                printf("%d,",A236542(d-k,k)) ;
        end do:
    end do:
  • Mathematica
    A007821 = Prime[Select[Range[15], !PrimeQ[#]&]];
    T[n_, k_] := T[n, k] = If[n == 1, If[k <= Length[A007821], A007821[[k]], Print["A007821 must be extended"]; Abort[]], Prime[T[n-1, k]]];
    Table[T[n-k+1, k], {n, 1, 9}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Apr 16 2020 *)

Formula

T(1,k) = A007821(k).
T(n,k) = prime( T(n-1,k) ), n>1 .

A050436 Third-order composites.

Original entry on oeis.org

16, 21, 25, 26, 28, 33, 36, 38, 39, 42, 48, 49, 50, 52, 55, 56, 57, 60, 64, 68, 69, 70, 72, 74, 77, 78, 80, 84, 87, 88, 90, 93, 94, 95, 98, 100, 104, 105, 106, 110, 111, 115, 117, 118, 119, 121, 122, 124, 125, 126, 130, 133, 135, 138, 140, 141, 145, 146, 147
Offset: 1

Views

Author

Michael Lugo (mlugo(AT)thelabelguy.com), Dec 22 1999

Keywords

Examples

			C(C(C(8))) = C(C(15)) = C(25) = 38. So 38 is in the sequence.
		

Crossrefs

Programs

  • Maple
    C := remove(isprime,[$4..1000]): seq(C[C[C[C[n]]]],n=1..100);
  • Mathematica
    Nest[Values@ KeySelect[MapIndexed[First@ #2 -> #1 &, #], CompositeQ] &, Select[Range@ 150, CompositeQ], 2] (* Michael De Vlieger, Jul 22 2017 *)

Formula

Let C(n) be the n-th composite number, with C(1)=4. Then these are numbers C(C(C(n))).

Extensions

More terms from Asher Auel Dec 15 2000

A064960 The prime then composite recurrence; a(2n) = a(2n-1)-th prime and a(2n+1) = a(2n)-th composite and a(1) = 1.

Original entry on oeis.org

1, 2, 6, 13, 22, 79, 108, 593, 722, 5471, 6290, 62653, 69558, 876329, 951338, 14679751, 15692307, 289078661, 305618710, 6588286337, 6908033000, 171482959009, 178668550322, 5040266614919, 5225256019175, 165678678591359, 171068472492228, 6039923990345039
Offset: 1

Views

Author

Robert G. Wilson v, Oct 29 2001

Keywords

Crossrefs

Programs

  • Mathematica
    Composite[n_Integer] := FixedPoint[n + PrimePi[ # ] + 1 &, n + PrimePi[n] + 1]; a = {1}; b = 1; Do[ If[ !PrimeQ[b], b = Prime[b], b = Composite[b]]; a = Append[a, b], {n, 1, 23}]; a
  • Python
    from functools import cache
    from sympy import prime, composite
    @cache
    def A064960(n): return 1 if n == 1 else composite(A064960(n-1)) if n % 2 else prime(A064960(n-1)) # Chai Wah Wu, Jan 01 2022

Extensions

a(26)-a(28) from Chai Wah Wu, May 07 2018

A064961 Composite-then-prime recurrence; a(2n) = a(2n-1)-th composite and a(2n+1) = a(2n)-th prime and a(1) = 1.

Original entry on oeis.org

1, 4, 7, 14, 43, 62, 293, 366, 2473, 2892, 26317, 29522, 344249, 376259, 5429539, 5831545, 101291779, 107457490, 2198218819, 2310909505, 54720307351, 57128530327, 1543908890351, 1603146693999, 48871886538151, 50527531769529, 1720466016680911, 1772475453490311
Offset: 1

Views

Author

Robert G. Wilson v, Oct 29 2001

Keywords

Crossrefs

Programs

  • Mathematica
    Composite[n_Integer] := FixedPoint[n + PrimePi[ # ] + 1 &, n + PrimePi[n] + 1]; a = {1, 4}; b = 4; Do[ If[ !PrimeQ[b], b = Prime[b], b = Composite[b]]; a = Append[a, b], {n, 1, 23}]; a

Extensions

a(24)-a(26) corrected and a(27)-a(28) added by Chai Wah Wu, Aug 22 2018

A283458 Primes for which A049076(p) = 14.

Original entry on oeis.org

3657500101, 12055296811267, 156740126985437, 575411103069067, 966399998477597, 1841803943951113, 4176603711876241, 6373890505436101, 7910004791442043, 10613343313176589, 15000987504638299, 23825707567607467, 25462803625208449, 30634679101122821, 41400950264534519, 49969246522326097
Offset: 1

Views

Author

Robert G. Wilson v, Mar 08 2017

Keywords

Comments

Also used Kim Walisch's primecount.

Crossrefs

Programs

  • Mathematica
    Nest[Prime, Select[Range[7], ! PrimeQ[#] &], 13]

Formula

a(n) = A000040(A093046(n)).

A283459 Primes for which A049076(p) = 15.

Original entry on oeis.org

88362852307, 392654585611999, 5519908106212193, 21034688742654437, 35843152090509943, 69532764058102673, 161191749822468689, 248761474969923757, 310467261969020581, 419776921940182991, 598644471430113247, 962125183414225879, 1029970322316321083, 1244984735583648473, 1695313841631390713
Offset: 1

Views

Author

Robert G. Wilson v, Mar 08 2017

Keywords

Comments

Also used Kim Walisch's primecount.

Crossrefs

Programs

  • Mathematica
    Nest[Prime, Select[Range[3], ! PrimeQ[#] &], 14]

Formula

a(n) = A000040(A283458(n)).

A318554 a(n) is the smallest prime number having order of primeness = prime(n).

Original entry on oeis.org

3, 5, 31, 709, 9737333, 3657500101, 2586559730396077, 4123221751654370051, 28785866289100396890228041
Offset: 1

Views

Author

David James Sycamore, Aug 27 2018

Keywords

Comments

Let F(k) denote A049076(k). The list of primes p such that F(p) = n begins with q, the smallest prime to have prime index in each of n-1 successive primeth iterations, finally taking nonprime index 1 at the n-th iteration. All other members p such that F(p) = n are primes > q which also take a nonprime index at the n-th iteration. The reverse sequence of associated indices for q = prime(n) gives successive terms of the primeth recurrence 1,2,3,5,... until reaching A007097(prime(n)) = a(n).

Examples

			The sequence of primes with order of primeness F(p) = prime(1) = 2 begins 3,17,41,67,...
so a(1)=3. Likewise, F(p) = prime(2) = 3 begins 5,59,179,... so a(2)=5.
		

Crossrefs

Formula

a(n) = A007097(prime(n)); n >= 1.
Previous Showing 11-20 of 20 results.