cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-29 of 29 results.

A135044 a(1)=1, then a(c) = p and a(p) = c, where c = T_c(r,k) and p = T_p(r,k), and where T_p contains the primes arranged in rows by the prime index chain and T_c contains the composites arranged in rows by the order of compositeness. See Formula.

Original entry on oeis.org

1, 4, 9, 2, 16, 7, 6, 13, 3, 19, 26, 17, 8, 23, 41, 5, 12, 67, 10, 29, 59, 37, 14, 83, 179, 11, 43, 331, 20, 47, 39, 109, 277, 157, 53, 431, 22, 1063, 31, 191, 15, 2221, 27, 61, 211, 71, 30, 599, 1787, 919, 241, 3001, 35, 73, 8527, 127, 1153, 79, 21, 19577, 44, 89, 283
Offset: 1

Views

Author

Katarzyna Matylla, Feb 11 2008

Keywords

Comments

Exchanges primes with composites, primeth primes with composith composites, etc.
Exchange the k-th prime of order j with the k-th composite of order j and vice versa.
Self-inverse permutation of positive integers.
If n is the composite number A236536(r,k), then a(n) is the corresponding prime A236542(r,k) at the same position (r,k). Vice versa, if n is the prime A236542(r,k), then a(n) is the corresponding composite A236536(r,k) at the same position. - Andrew Weimholt, Jan 28 2014
The original name for this entry did not produce this sequence, but instead A236854, which differs from this permutation for the first time at n=8, where A236854(8)=23, while here a(8)=13. - Antti Karttunen, Feb 01 2014

Examples

			From _Andrew Weimholt_, Jan 29 2014: (Start)
More generally, takes the primes organized in an array according to the sieving process described in the Fernandez paper:
        Row[1](n) = 2, 7, 13, 19, 23, ...
        Row[2](n) = 3, 17, 41, 67, 83, ...
        Row[3](n) = 5, 59, 179, ...
        Row[4](n) = 11, 277, ...
        Lets call this  T_p (n, k)
Also take the composites organized in a similar manner, except we use "composite" numbered positions in our sieve:
        Row[1](n) = 4, 6, 8, 10, 14, 20, 22, ...
        Row[2](n) = 9, 12, 15, 18, 24, ...
        Row[3](n) = 16, 21, 25, ...
        Lets call this T_c (n, k)
If we now take the natural numbers and swap each number (except for 1) with the number which holds the same spot in the other array, then we get the sequence: 1, 4, 9, 2, 16, 7, 6, 13, with for example a(8) = 13 (13 holds the same position in the 'prime' table as 8 does in the 'composite' table). (End)
		

Crossrefs

Programs

  • Maple
    A135044 := proc(n)
        if n = 1 then
            1;
        elif isprime(n) then
            idx := -1 ;
            for r from 1 do
                for c from 1 do
                    if A236542(r,c) = n then
                        idx := [r,c] ;
                    end if;
                    if A236542(r,c) >= n then
                        break;
                    end if;
                end do:
                if type(idx,list)  then
                    break;
                end if;
            end do:
            A236536(r,c) ;
        else
            idx := -1 ;
            for r from 1 do
                for c from 1 do
                    if A236536(r,c) = n then
                        idx := [r,c] ;
                    end if;
                    if A236536(r,c) >= n then
                        break;
                    end if;
                end do:
                if type(idx,list)  then
                    break;
                end if;
            end do:
            A236542(r,c) ;
        end if;
    end proc: # R. J. Mathar, Jan 28 2014
  • Mathematica
    Composite[n_Integer] := Block[{k = n + PrimePi@n + 1}, While[k != n + PrimePi@k + 1, k++ ]; k]; Compositeness[n_] := Block[{c = 1, k = n}, While[ !(PrimeQ@k || k == 1), k = k - 1 - PrimePi@k; c++ ]; c]; Primeness[n_] := Block[{c = 1, k = n}, While[ PrimeQ@k, k = PrimePi@k; c++ ]; c];
    ckj[k_, j_] := Select[ Table[Composite@n, {n, 10000}], Compositeness@# == j &][[k]]; pkj[k_, j_] := Select[ Table[Prime@n, {n, 3000}], Primeness@# == j &][[k]]; f[0]=0; f[1] = 1;
    f[n_] := If[ PrimeQ@ n, pn = Primeness@n; ckj[ Position[ Select[ Table[ Prime@ i, {i, 150}], Primeness@ # == pn &], n][[1, 1]], pn], cn = Compositeness@n; pkj[ Position[ Select[ Table[ Composite@ i, {i, 500}], Compositeness@ # == cn &], n][[1, 1]], cn]]; Array[f, 64] (* Robert G. Wilson v *)

Formula

a(1)=1, a(A236536(r,k))=A236542(r,k), a(A236542(r,k))=A236536(r,k)

Extensions

Edited, corrected and extended by Robert G. Wilson v, Feb 18 2008
Name corrected by Andrew Weimholt, Jan 29 2014

A064812 Smallest prime p such that the infinite sequence {p, p'=2p-1, p''=2p'-1, ...} begins with a string of exactly n primes.

Original entry on oeis.org

5, 3, 2, 2131, 1531, 33301, 16651, 15514861, 857095381, 205528443121, 1389122693971, 216857744866621, 758083947856951, 107588900851484911, 69257563144280941
Offset: 1

Views

Author

David Terr, Oct 21 2002

Keywords

Comments

Chains of length n of nearly doubled primes.
Smallest prime beginning a complete Cunningham chain of length n of the second kind. (For the first kind see A005602.) - Jonathan Sondow, Oct 30 2015

Examples

			a(3) = 2 because 2 is the smallest prime such that the sequence {2, 3, 5, 9, ...} begins with exactly 3 primes, where each term in the sequence is twice the preceding term minus 1.
		

Crossrefs

A050440 Sixth-order composites.

Original entry on oeis.org

56, 69, 77, 78, 84, 94, 100, 105, 106, 115, 124, 125, 126, 133, 140, 141, 145, 152, 156, 162, 164, 165, 170, 174, 183, 184, 188, 198, 202, 203, 206, 209, 212, 213, 218, 222, 231, 235, 236, 242, 243, 253, 256, 258, 259, 262, 264, 266, 270, 272, 278, 284
Offset: 1

Views

Author

Michael Lugo (mlugo(AT)thelabelguy.com), Dec 22 1999

Keywords

Examples

			C(C(C(C(C(C(1)))))) = C(C(C(C(C(4))))) = C(C(C(C(9)))) = C(C(C(16))) = C(C(26)) = C(39) = 56. So 56 is in the sequence. So 77 is in the sequence.
		

Crossrefs

Programs

  • Maple
    C := remove(isprime,[$4..1000]): seq(C[C[C[C[C[C[n]]]]]],n=1..100);

Formula

Let C(n) be the n-th composite number, with C(1)=4. Then these are numbers C(C(C(C(C(C(n)))))).

Extensions

More terms from Asher Auel Dec 15 2000

A064960 The prime then composite recurrence; a(2n) = a(2n-1)-th prime and a(2n+1) = a(2n)-th composite and a(1) = 1.

Original entry on oeis.org

1, 2, 6, 13, 22, 79, 108, 593, 722, 5471, 6290, 62653, 69558, 876329, 951338, 14679751, 15692307, 289078661, 305618710, 6588286337, 6908033000, 171482959009, 178668550322, 5040266614919, 5225256019175, 165678678591359, 171068472492228, 6039923990345039
Offset: 1

Views

Author

Robert G. Wilson v, Oct 29 2001

Keywords

Crossrefs

Programs

  • Mathematica
    Composite[n_Integer] := FixedPoint[n + PrimePi[ # ] + 1 &, n + PrimePi[n] + 1]; a = {1}; b = 1; Do[ If[ !PrimeQ[b], b = Prime[b], b = Composite[b]]; a = Append[a, b], {n, 1, 23}]; a
  • Python
    from functools import cache
    from sympy import prime, composite
    @cache
    def A064960(n): return 1 if n == 1 else composite(A064960(n-1)) if n % 2 else prime(A064960(n-1)) # Chai Wah Wu, Jan 01 2022

Extensions

a(26)-a(28) from Chai Wah Wu, May 07 2018

A064961 Composite-then-prime recurrence; a(2n) = a(2n-1)-th composite and a(2n+1) = a(2n)-th prime and a(1) = 1.

Original entry on oeis.org

1, 4, 7, 14, 43, 62, 293, 366, 2473, 2892, 26317, 29522, 344249, 376259, 5429539, 5831545, 101291779, 107457490, 2198218819, 2310909505, 54720307351, 57128530327, 1543908890351, 1603146693999, 48871886538151, 50527531769529, 1720466016680911, 1772475453490311
Offset: 1

Views

Author

Robert G. Wilson v, Oct 29 2001

Keywords

Crossrefs

Programs

  • Mathematica
    Composite[n_Integer] := FixedPoint[n + PrimePi[ # ] + 1 &, n + PrimePi[n] + 1]; a = {1, 4}; b = 4; Do[ If[ !PrimeQ[b], b = Prime[b], b = Composite[b]]; a = Append[a, b], {n, 1, 23}]; a

Extensions

a(24)-a(26) corrected and a(27)-a(28) added by Chai Wah Wu, Aug 22 2018

A058010 The main diagonal of N. Fernandez's Order of Primeness array.

Original entry on oeis.org

2, 17, 179, 2221, 27457, 506683, 14161729, 368345293, 9672485827, 318083817907, 12695664159413
Offset: 1

Views

Author

Robert G. Wilson v, Nov 13 2000

Keywords

Crossrefs

Main diagonal of A236542.

Programs

  • Mathematica
    a = Select[ Range[ 20 ], ! PrimeQ[ # ] & ] Table[ Nest[ Prime, a[ [ n ] ], n ], {n, 1, 11} ]

A283458 Primes for which A049076(p) = 14.

Original entry on oeis.org

3657500101, 12055296811267, 156740126985437, 575411103069067, 966399998477597, 1841803943951113, 4176603711876241, 6373890505436101, 7910004791442043, 10613343313176589, 15000987504638299, 23825707567607467, 25462803625208449, 30634679101122821, 41400950264534519, 49969246522326097
Offset: 1

Views

Author

Robert G. Wilson v, Mar 08 2017

Keywords

Comments

Also used Kim Walisch's primecount.

Crossrefs

Programs

  • Mathematica
    Nest[Prime, Select[Range[7], ! PrimeQ[#] &], 13]

Formula

a(n) = A000040(A093046(n)).

A283459 Primes for which A049076(p) = 15.

Original entry on oeis.org

88362852307, 392654585611999, 5519908106212193, 21034688742654437, 35843152090509943, 69532764058102673, 161191749822468689, 248761474969923757, 310467261969020581, 419776921940182991, 598644471430113247, 962125183414225879, 1029970322316321083, 1244984735583648473, 1695313841631390713
Offset: 1

Views

Author

Robert G. Wilson v, Mar 08 2017

Keywords

Comments

Also used Kim Walisch's primecount.

Crossrefs

Programs

  • Mathematica
    Nest[Prime, Select[Range[3], ! PrimeQ[#] &], 14]

Formula

a(n) = A000040(A283458(n)).

A318554 a(n) is the smallest prime number having order of primeness = prime(n).

Original entry on oeis.org

3, 5, 31, 709, 9737333, 3657500101, 2586559730396077, 4123221751654370051, 28785866289100396890228041
Offset: 1

Views

Author

David James Sycamore, Aug 27 2018

Keywords

Comments

Let F(k) denote A049076(k). The list of primes p such that F(p) = n begins with q, the smallest prime to have prime index in each of n-1 successive primeth iterations, finally taking nonprime index 1 at the n-th iteration. All other members p such that F(p) = n are primes > q which also take a nonprime index at the n-th iteration. The reverse sequence of associated indices for q = prime(n) gives successive terms of the primeth recurrence 1,2,3,5,... until reaching A007097(prime(n)) = a(n).

Examples

			The sequence of primes with order of primeness F(p) = prime(1) = 2 begins 3,17,41,67,...
so a(1)=3. Likewise, F(p) = prime(2) = 3 begins 5,59,179,... so a(2)=5.
		

Crossrefs

Formula

a(n) = A007097(prime(n)); n >= 1.
Previous Showing 21-29 of 29 results.