A307528
G.f. A(x) satisfies: A(x) = 1 + x^2*A(x)^2/(1 - x*A(x) - x^2*A(x)^2 - x^3*A(x)^3).
Original entry on oeis.org
1, 0, 1, 1, 4, 9, 27, 76, 226, 680, 2078, 6441, 20153, 63684, 202732, 649930, 2095854, 6794684, 22131765, 72393439, 237703654, 783198068, 2588645047, 8580674778, 28517805357, 95009277576, 317242351135, 1061500510809, 3558683892258, 11952025977378, 40209157279701
Offset: 0
G.f.: A(x) = 1 + x^2 + x^3 + 4*x^4 + 9*x^5 + 27*x^6 + 76*x^7 + 226*x^8 + 680*x^9 + 2078*x^10 + ...
-
terms = 31; CoefficientList[1/x InverseSeries[Series[x (1 - x - x^2 - x^3)/(1 - x - x^3), {x, 0, terms}], x], x]
terms = 30; A[] = 0; Do[A[x] = 1 + x^2 A[x]^2/(1 - x A[x] - x^2 A[x]^2 - x^3 A[x]^3) + O[x]^(terms + 1) // Normal, {terms + 1}]; CoefficientList[A[x], x]
terms = 31; t[n_] := t[n] = SeriesCoefficient[x^2/(1 - x - x^2 - x^3), {x, 0, n}]; A[] = 0; Do[A[x] = 1 + Sum[t[k] x^k A[x]^k, {k, 2, j}] + O[x]^j, {j, 1, terms}]; CoefficientList[A[x], x]
A307529
G.f. A(x) satisfies: A(x) = (1 - x^2*A(x)^2)/(1 - x^2*A(x)^2 - x^3*A(x)^3).
Original entry on oeis.org
1, 0, 0, 1, 0, 1, 4, 1, 10, 23, 18, 92, 168, 241, 856, 1480, 2904, 8266, 14854, 33496, 83578, 161047, 380488, 884326, 1819714, 4321045, 9730466, 21019404, 49456092, 110408981, 246005440, 572574553, 1281705752, 2906696339, 6711882928, 15128432758, 34625418170
Offset: 0
G.f.: A(x) = 1 + x^3 + x^5 + 4*x^6 + x^7 + 10*x^8 + 23*x^9 + 18*x^10 + 92*x^11 + 168*x^12 + ...
-
terms = 37; CoefficientList[1/x InverseSeries[Series[x (1 - x^2 - x^3)/(1 - x^2), {x, 0, terms}], x], x]
terms = 36; A[] = 0; Do[A[x] = (1 - x^2 A[x]^2)/(1 - x^2 A[x]^2 - x^3 A[x]^3) + O[x]^(terms + 1) // Normal, {terms + 1}]; CoefficientList[A[x], x]
terms = 37; p[n_] := p[n] = SeriesCoefficient[(1 - x^2)/(1 - x^2 - x^3), {x, 0, n}]; A[] = 1; Do[A[x] = Sum[p[k] x^k A[x]^k, {k, 0, j}] + O[x]^j, {j, 1, terms}]; CoefficientList[A[x], x]
A367056
G.f. satisfies A(x) = 1 + x*A(x)^2 + x^3*A(x).
Original entry on oeis.org
1, 1, 2, 6, 17, 52, 168, 561, 1922, 6719, 23871, 85938, 312823, 1149421, 4257460, 15880036, 59594517, 224856450, 852491806, 3245959002, 12407332166, 47592364107, 183139542306, 706794663136, 2735053815771, 10609811267757, 41251228784198
Offset: 0
-
A367056 := proc(n)
add(binomial(n-2*k+1,k) * binomial(2*n-5*k,n-3*k)/(n-2*k+1),k=0..floor(n/3)) ;
end proc:
seq(A367056(n),n=0..70) ; # R. J. Mathar, Dec 04 2023
-
a(n) = sum(k=0, n\3, binomial(n-2*k+1, k)*binomial(2*n-5*k, n-3*k)/(n-2*k+1));
A367413
Expansion of (1/x) * Series_Reversion( x * (1-x-x^3/(1-x)^2) ).
Original entry on oeis.org
1, 1, 2, 6, 22, 87, 356, 1493, 6398, 27936, 123906, 556734, 2528668, 11590555, 53545932, 249065874, 1165482126, 5482782933, 25914899804, 123009541412, 586121731150, 2802470267460, 13441993044464, 64660400422341, 311861855749484, 1507802756171072, 7306422899878394
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x-x^3/(1-x)^2))/x)
-
a(n) = sum(k=0, n\3, binomial(n+k, k)*binomial(2*n, n-3*k))/(n+1);
A370797
Expansion of (1/x) * Series_Reversion( x/(x+1/(1-x-x^3)) ).
Original entry on oeis.org
1, 2, 5, 16, 61, 256, 1133, 5191, 24403, 117066, 570835, 2821026, 14097839, 71121660, 361718339, 1852640518, 9547375955, 49469352300, 257564997407, 1346840074300, 7070283106575, 37246786128714, 196849114734855, 1043398553112059, 5545408681615257
Offset: 0
A052740
A simple context-free grammar in a labeled universe.
Original entry on oeis.org
0, 1, 2, 12, 144, 2400, 50400, 1290240, 39070080, 1365154560, 54047347200, 2391175987200, 116918542540800, 6260970517401600, 364413626331955200, 22906448213096448000, 1546480919558615040000, 111605770820457897984000
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
spec := [S,{C=Prod(B,B),S=Union(B,Z,C),B=Prod(S,S)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
A092413
Coefficient of x^n in solution of x = y + y^2 + y^4 + y^8 + ...
Original entry on oeis.org
1, -1, 2, -6, 20, -70, 256, -970, 3772, -14960, 60280, -246090, 1015700, -4231216, 17767456, -75126078, 319588340, -1366846548, 5873832384, -25350152100, 109828012448, -477486940848, 2082520454864, -9109146150050, 39950535931956
Offset: 1
-
# Using function CompInv from A357588.
CompInv(25, n -> if 2^ilog2(n) = n then 1 else 0 fi); # Peter Luschny, Oct 05 2022
-
serreverse(sum(k=0,8,x^(2^k))+O(x^257))
A371416
Expansion of (1/x) * Series_Reversion( x * (1 - 3*x - x^3) ).
Original entry on oeis.org
1, 3, 18, 136, 1152, 10458, 99472, 978453, 9871686, 101590654, 1062271704, 11253818628, 120535386692, 1303045817184, 14199323523912, 155805565801803, 1720024043803542, 19090440094335912, 212897898182054224, 2384431948345110510, 26808516659219953680
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-3*x-x^3))/x)
-
a(n) = sum(k=0, n\2, 3^k*binomial(n+k, k)*binomial(4*n+k+2, n-2*k))/(n+1);
-
a(n) = sum(k=0, n\3, 3^(n-3*k)*binomial(n+k, k)*binomial(2*n-2*k, n-3*k))/(n+1);
Comments