cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 31 results. Next

A085567 Least m such that the average number of divisors of all integers from 1 to m equals n, or 0 if no such number exists.

Original entry on oeis.org

1, 4, 15, 42, 121, 336, 930, 2548, 6937, 0, 51322, 0, 379097, 0, 2801205, 0, 20698345, 56264090, 152941920, 0, 0, 0, 8350344420, 0, 61701166395, 0, 455913379395, 1239301050694, 3368769533660, 0, 24892027072619, 0, 183928584450999, 0, 0, 0
Offset: 1

Views

Author

Jason Earls, Jul 06 2003

Keywords

Comments

"In 1838 Lejeune Dirichlet (1805-1859) proved that (1/n)*sum_{r=1..n} #(divisors(r)), the average number of divisors of all integers from 1 to n, approaches ln n + 2gamma - 1 as n increases." [Havil]
a(n+1)/a(n) ~ e. - Robert G. Wilson v

Examples

			a(2) = 4 because (1/4)*(1+2+2+3) = 2.
		

References

  • Julian Havil, "Gamma: Exploring Euler's Constant", Princeton University Press, Princeton and Oxford, pp. 112-113, 2003.

Crossrefs

Extensions

Edited and extended by Robert G. Wilson v, Jul 07 2003
Corrected by Rick L. Shepherd, Aug 28 2003
Missing terms a(16)-a(17) and a(20)-a(29) added by Donovan Johnson, Dec 21 2008
a(30)-a(36) from Donovan Johnson, Jul 20 2011

A063971 Values of n for which A013939(n)/n is an integer.

Original entry on oeis.org

1, 6, 7, 8, 9, 455, 457, 458, 459, 461, 8167302, 8167314, 8167315, 8167316, 8167328, 8167330, 8167335, 8167336, 8167346, 8167347, 8167348, 8167350, 8167351, 8167352, 8167410, 8167413
Offset: 1

Views

Author

Labos Elemer, Sep 05 2001

Keywords

Comments

For 455, 457, 458, 459, 461 the quotient is 2. The cause of "step-like" appearance of terms is that the next integer is reached slowly with the summatory function A013939. Next "island" is expected above 500000. Similar phenomenon is observable in the analogous A050226 sequence too.
The quotients for "3rd island" after 8160000 equal 3. (Sep 21 2001)
a(27) > 10^13. - Giovanni Resta, Apr 24 2017

Crossrefs

Programs

  • Mathematica
    s = 0; Do[s = s + Length[FactorInteger[n]]; If[IntegerQ[s/n], Print[n]], {n, 1, 10000000}]

Extensions

More terms from Robert G. Wilson v, Sep 19 2001

A379922 Numbers m that divide the alternating sum Sum_{k=1..m} (-1)^(k+1) * sigma_2(k).

Original entry on oeis.org

1, 2, 3, 42, 329, 633, 1039, 5689, 26621, 39245, 1101875, 1216075, 40088584, 67244920, 104332211, 549673265, 777631064, 19879301756
Offset: 1

Views

Author

Amiram Eldar, Jan 06 2025

Keywords

Comments

Numbers m such that m | A379921(m).
The corresponding quotients, A379921(m)/m, are -1, 2, -2, 120, 5228, ... (see the link for more values).
a(19) > 5*10^10, if it exists.

Crossrefs

Cf. A001157 (sigma_2), A379921.

Programs

  • Mathematica
    With[{m = 40000}, Position[Accumulate[Table[(-1)^n * DivisorSigma[2, n], {n, 1, m}]]/Range[m], _?IntegerQ] // Flatten]
  • PARI
    list(lim) = my(s = 0); for(k = 1, lim, s += (-1)^k * sigma(k, 2); if(!(s % k), print1(k, ", ")));

A379923 Numbers m that divide the alternating sum Sum_{k=1..m} (-1)^k * A000005(k).

Original entry on oeis.org

1, 5, 18, 22, 25, 29, 197, 1350, 1360, 1362, 1368, 1381, 1391, 1395, 10200, 75486, 75490, 557768, 557843, 557853, 557898, 4121846, 4122064, 4122112, 4122222, 30457732, 30457773, 30457835, 30458040, 30458133, 30458138, 30458140, 30458335, 225056911, 225056919, 225056925, 225056989
Offset: 1

Views

Author

Amiram Eldar, Jan 06 2025

Keywords

Comments

Numbers m such that m | A307704(m).
The corresponding quotients, A307704(m)/m, are -1, 0, 1, 1, 1, 1, 2, 3, 3, 3, ... (see the link for more values).
a(38) > 2*10^10, if it exists.

Crossrefs

Programs

  • Mathematica
    With[{m = 10000}, Position[Accumulate[Table[(-1)^n * DivisorSigma[0, n], {n, 1, m}]]/Range[m], _?IntegerQ] // Flatten]
  • PARI
    list(lim) = my(s = 0); for(k = 1, lim, s += (-1)^k * numdiv(k); if(!(s % k), print1(k, ", ")));

A379924 Numbers m that divide the alternating sum Sum_{k=1..m} (-1)^(k+1) * usigma(k).

Original entry on oeis.org

1, 2, 9, 54, 101, 178, 189, 2071, 3070, 9171, 11450, 12794, 21405, 27553, 35285, 251974, 2069863, 2395894, 155931488, 387586437, 758519827, 1202435693, 9859113494, 42703260442
Offset: 1

Views

Author

Amiram Eldar, Jan 06 2025

Keywords

Comments

Numbers m such that m | A370898(m).
The corresponding quotients, A370898(m)/m, are -1, 1, 0, 6, 9, ... (see the link for more values).
a(25) > 5*10^10, if it exists.

Crossrefs

Cf. A034448 (usigma), A370898.

Programs

  • Mathematica
    usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); usigma[1] = 1; With[{m = 260000}, Position[Accumulate[Table[(-1)^n * usigma[n], {n, 1, m}]]/Range[m], _?IntegerQ] // Flatten]
  • PARI
    usigma(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + f[i, 1]^f[i, 2]); }
    list(lim) = my(s = 0); for(k = 1, lim, s += (-1)^k * usigma(k); if(!(s % k), print1(k, ", ")));

A140221 A number n is included if n is coprime to Sum_{k=1..n} d(k), where d(k) is the number of divisors of k.

Original entry on oeis.org

1, 2, 3, 7, 9, 10, 11, 12, 13, 14, 17, 19, 23, 25, 27, 28, 29, 31, 32, 34, 35, 37, 41, 43, 45, 49, 50, 51, 52, 53, 54, 56, 58, 59, 61, 62, 65, 67, 69, 71, 73, 75, 77, 79, 81, 82, 83, 84, 86, 87, 88, 89, 92, 93, 94, 95, 97, 98, 101, 103, 107, 109, 111, 113, 115, 117, 119, 122
Offset: 1

Views

Author

Leroy Quet, May 12 2008

Keywords

Comments

Sum_{k=1..n} d(k) = Sum_{k=1..n} floor(n/k) = A006218(n).

Crossrefs

Programs

  • Maple
    N:= 500: # for terms <= N
    S:= ListTools:-PartialSums(map(numtheory:-tau, [$1..N])):
    select(t -> igcd(t,S[t])=1, [$1..N]); # Robert Israel, Feb 20 2024
  • Mathematica
    With[{r = Range[200]}, PositionIndex[CoprimeQ[r, Accumulate[DivisorSigma[0, r]]]][True]] (* Paolo Xausa, Feb 21 2024 *)
  • Python
    from math import gcd, isqrt
    def A140221_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n: gcd(n,-(s:=isqrt(n))**2+(sum(n//k for k in range(1,s+1))<<1))==1,count(max(startvalue,1)))
    A140221_list = list(islice(A140221_gen(),30)) # Chai Wah Wu, Oct 23 2023

Extensions

More terms from Max Alekseyev, May 10 2009

A344731 Numbers k such that k divides A306069(k).

Original entry on oeis.org

1, 275, 277, 3337, 3353, 3359, 39675, 39689, 472467, 797806459, 9501109507
Offset: 1

Views

Author

Amiram Eldar, May 27 2021

Keywords

Comments

The corresponding quotients A306069(k)/k are 1, 5, 5, 7, 7, 7, 9, 9, 11, 17, 19, ...
a(12) > 7.5*10^10, if it exists.

Examples

			a(1) = 1 since A306069(1) = 1 is divisible by 1.
a(2) = 275 since A306069(275) = 1375 = 5 * 275 is divisible by 275.
		

Crossrefs

The bi-unitary version of A050226.
Similar sequences: A064610, A344732, A344733.

Programs

  • Mathematica
    f[p_, e_] := If[Mod[e, 2] == 1, (e + 1), e]; s[1] = 1; s[n_] := s[n] = s[n - 1] + Times @@ f @@@ FactorInteger[n]; Select[Range[40000], Divisible[s[#], #] &]

A344732 Numbers k such that k divides Sum_{j=1..k} A048105(j).

Original entry on oeis.org

1, 2, 3, 54, 58, 62, 71, 10535, 10541, 10579, 135242, 135243, 1733777, 1733781, 1733895, 1733905, 1733999, 22216757, 22216765, 22216790, 22216808, 22216814, 46745561148, 46745561156
Offset: 1

Views

Author

Amiram Eldar, May 27 2021

Keywords

Comments

The corresponding quotients Sum_{j=1..k} A048105(j)/k are 0, 0, 0, 1, 1, 1, 1, 3, 3, 3, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 9, 9, ...
a(25) > 7.5*10^10, if it exists.

Examples

			a(1) = 1 since A048105(1) = 0 is divisible by 1.
a(4) = 54 since Sum_{j=1..54} A048105(j) = 54 is divisible by 54.
		

Crossrefs

Cf. A048105.
The non-unitary version of A050226.
Similar sequences: A064610, A344731, A344733.

Programs

  • Mathematica
    s[1] = 0; s[n_] := s[n] = s[n - 1] + DivisorSigma[0, n] - 2^PrimeNu[n]; Select[Range[140000], Divisible[s[#], #] &]

A344733 Numbers k such that k divides A327573(k).

Original entry on oeis.org

1, 25, 387, 6063, 1416379, 1416403, 1416411, 331362359, 5068450527
Offset: 1

Views

Author

Amiram Eldar, May 27 2021

Keywords

Comments

The corresponding quotients A327573(k)/k are 1, 3, 5, 7, 11, 11, 11, 15, 17, ...
a(10) > 7.5*10^10, if it exists.

Examples

			a(1) = 1 since A327573(1) = 1 is divisible by 1.
a(2) = 25 since A327573(25) = 75 = 3 * 25 is divisible by 25.
		

Crossrefs

The infinitary version of A050226.
Similar sequences: A064610, A344731, A344732.

Programs

  • Mathematica
    f[p_, e_] := 2^DigitCount[e, 2, 1]; s[1] = 1; s[n_] := s[n] = s[n - 1] + Times @@ f @@@ FactorInteger[n]; Select[Range[1.5*10^6], Divisible[s[#], #] &]

A073128 Integer quotients arising in A063986.

Original entry on oeis.org

0, 1, 1, 5, 5, 49, 118, 121, 2406, 2698, 4182, 4946, 153627, 3087192, 8203485, 38394376, 487844934, 2822741576, 4140154385, 4397137572, 8583966231
Offset: 1

Views

Author

Labos Elemer, Jul 16 2002

Keywords

Examples

			n=15, A063986(15)=41846733, sum of first 41846733 cototients is s=343289046464505, a(15)=s/41846733. Only in knowledge of either the quotients or of partial sums of cototients is it possible to continue A063986 without recomputing previous terms!
		

Crossrefs

Formula

a(n)=Sum[cototient[j], j=1..A063986(n)]/A063986(n)

Extensions

Changed A063896 to A063986 and a(16)-a(21) from Donovan Johnson, May 11 2010
Previous Showing 11-20 of 31 results. Next