cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A050226 Numbers m such that m divides Sum_{k = 1..m} A000005(k).

Original entry on oeis.org

1, 4, 5, 15, 42, 44, 47, 121, 336, 340, 347, 930, 2548, 6937, 6947, 51322, 379097, 379131, 379133, 2801205, 20698345, 56264090, 56264197, 152941920, 152942012, 8350344420, 61701166395, 455913379395, 455913379831, 1239301050694, 3368769533660, 3368769533812
Offset: 1

Views

Author

Labos Elemer, Dec 20 1999

Keywords

Examples

			For k = 15 the sum is 1 + 2 + 2 + 3 + 2 + 4 + 2 + 4 + 3 + 4 + 2 + 6 + 2 + 4 + 4 = 45 which is divisible by 15.
		

References

  • Julian Havil, "Gamma: Exploring Euler's Constant", Princeton University Press, Princeton and Oxford, pp. 112-113, 2003.

Crossrefs

Programs

  • Mathematica
    s = 0; Do[ s = s + DivisorSigma[ 0, n ]; If[ Mod[ s, n ] == 0, Print[ n ] ], {n, 1, 2*10^9} ]
    k=10^6; a[1]=1;a[n_]:=a[n]=DivisorSigma[0,n]+a[n-1]; nd=a/@Range@k; Select[Range@k,Divisible[nd[[#]],#]&] (* Ivan N. Ianakiev, Apr 30 2016 *)
    Module[{nn=400000},Select[Thread[{Range[nn],Accumulate[DivisorSigma[0,Range[nn]]]}],Divisible[#[[2]],#[[1]]]&]][[All,1]] (* The program generates the first 19 terms of the sequence. To generate more, increase the nn constant. *) (* Harvey P. Dale, Jul 03 2022 *)
  • PARI
    lista(nn) = {my(s = 0); for (n=1, nn, s += numdiv(n); if (!(s % n), print1(n, ", ")););} \\ Michel Marcus, Dec 14 2015
    
  • Sage
    def A050226_list(len):
        a, L = 0, []
        for n in (1..len):
            a += sigma(n,0)
            if n.divides(a): L.append(n)
        return L
    A050226_list(10000) # Peter Luschny, Dec 18 2015

Formula

m is in the sequence if Sum_{i = 1..m} d(i) = m*k, k an integer, where d(i) = number of divisors of i.

Extensions

More terms from Robert G. Wilson v, Sep 21 2000
Further terms from Naohiro Nomoto, Aug 03 2001
a(26)-a(30) from Donovan Johnson, Dec 21 2008

A085829 a(n) = least k such that the average number of divisors of {1..k} is >= n.

Original entry on oeis.org

1, 4, 15, 42, 120, 336, 930, 2548, 6930, 18870, 51300, 139440, 379080, 1030484, 2801202, 7614530, 20698132, 56264040, 152941824, 415739030, 1130096128, 3071920000, 8350344420, 22698590508, 61701166395, 167721158286, 455913379324, 1239301050624, 3368769533514
Offset: 1

Views

Author

Robert G. Wilson v, Jul 07 2003

Keywords

Comments

Does a(n+1)/a(n) converge to e?
Since the total number of divisors of {1..k} (see A006218) is k * (log(k) + 2*gamma - 1) + O(sqrt(k)), the average number of divisors of {1..k} approaches (log(k) + 2*gamma - 1). Since log(a(n)) + 2*gamma - 1 approaches n, a(n+1)/a(n) approaches e. - Jon E. Schoenfield, Aug 13 2007

Examples

			a(20) = 415739030 because the average number of divisors of {1..415739030} is >= 20.
		

References

  • Julian Havil, "Gamma: Exploring Euler's Constant", Princeton University Press, Princeton and Oxford, pp. 112-113, 2003.

Crossrefs

Programs

  • Mathematica
    s = 0; k = 1; Do[ While[s = s + DivisorSigma[0, k]; s < k*n, k++ ]; Print[k]; k++, {n, 1, 20}]
  • PARI
    A085829(n) = {local(s,k);s=1;k=1;while(sMichael B. Porter, Oct 23 2009

Extensions

Edited by Don Reble, Nov 06 2005
More terms from Jon E. Schoenfield, Aug 13 2007

A057494 a(n) = Sum_{k = 1..10^n} d(k) where d(n) = number of divisors of n (A000005).

Original entry on oeis.org

1, 27, 482, 7069, 93668, 1166750, 13970034, 162725364, 1857511568, 20877697634, 231802823220, 2548286736297, 27785452449086, 300880375389757, 3239062263181054, 34693207724724246, 369957928177109416, 3929837791070240368, 41600963003695964400, 439035480966899467508
Offset: 0

Views

Author

Robert G. Wilson v, Sep 21 2000

Keywords

Comments

The Polymath project describes an algorithm for computing a(n) in time O(2.154...^n), see Tao, Croot, and Helfgott link. - Charles R Greathouse IV, Apr 16 2012

Crossrefs

Programs

  • Mathematica
    k = s = 0; Do[ While[ k < 10^n, k++; s = s + DivisorSigma[ 0, k ] ]; Print[s], {n, 0, 8} ]
  • PARI
    a(n) = sum(k=1, 10^n, numdiv(k)); \\ Michel Marcus, Feb 19 2017
    
  • Python
    from math import isqrt
    def A057494(n): return -(s:=isqrt(m:=10**n))**2+(sum(m//k for k in range(1,s+1))<<1) # Chai Wah Wu, Oct 23 2023

Formula

a(n) = A006218(10^n). - Max Alekseyev, May 10 2009

Extensions

a(10)-a(16) from Max Alekseyev, Jan 25 2010
a(17)-a(19) from Donovan Johnson, Dec 26 2012
a(20)-a(27) from Hiroaki Yamanouchi, Sep 22 2015
a(28)-a(36) from Henri Lifchitz, Feb 19 2017

A085831 a(n) = Sum_{k=1..2^n} d(k) where d(n) = number of divisors of n (A000005).

Original entry on oeis.org

1, 3, 8, 20, 50, 119, 280, 645, 1466, 3280, 7262, 15937, 34720, 75108, 161552, 345785, 736974, 1564762, 3311206, 6985780, 14698342, 30850276, 64607782, 135030018, 281689074, 586636098, 1219788256, 2532608855, 5251282902, 10874696106, 22493653324, 46475828418
Offset: 0

Views

Author

Robert G. Wilson v, Sep 21 2000

Keywords

Crossrefs

Programs

  • Mathematica
    k = s = 0; Do[ While[ k < 2^n, k++; s = s + DivisorSigma[ 0, k ]]; Print[s], {n, 0, 29} ]
  • PARI
    a(n) = sum(k=1, 2^n, numdiv(k)); \\ Michel Marcus, Oct 10 2021
  • Python
    from math import isqrt
    def A085831(n): return (lambda m, r: 2*sum(r//k for k in range(1, m+1))-m*m)(isqrt(2**n),2**n) # Chai Wah Wu, Oct 08 2021
    
Showing 1-4 of 4 results.