cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A050226 Numbers m such that m divides Sum_{k = 1..m} A000005(k).

Original entry on oeis.org

1, 4, 5, 15, 42, 44, 47, 121, 336, 340, 347, 930, 2548, 6937, 6947, 51322, 379097, 379131, 379133, 2801205, 20698345, 56264090, 56264197, 152941920, 152942012, 8350344420, 61701166395, 455913379395, 455913379831, 1239301050694, 3368769533660, 3368769533812
Offset: 1

Views

Author

Labos Elemer, Dec 20 1999

Keywords

Examples

			For k = 15 the sum is 1 + 2 + 2 + 3 + 2 + 4 + 2 + 4 + 3 + 4 + 2 + 6 + 2 + 4 + 4 = 45 which is divisible by 15.
		

References

  • Julian Havil, "Gamma: Exploring Euler's Constant", Princeton University Press, Princeton and Oxford, pp. 112-113, 2003.

Crossrefs

Programs

  • Mathematica
    s = 0; Do[ s = s + DivisorSigma[ 0, n ]; If[ Mod[ s, n ] == 0, Print[ n ] ], {n, 1, 2*10^9} ]
    k=10^6; a[1]=1;a[n_]:=a[n]=DivisorSigma[0,n]+a[n-1]; nd=a/@Range@k; Select[Range@k,Divisible[nd[[#]],#]&] (* Ivan N. Ianakiev, Apr 30 2016 *)
    Module[{nn=400000},Select[Thread[{Range[nn],Accumulate[DivisorSigma[0,Range[nn]]]}],Divisible[#[[2]],#[[1]]]&]][[All,1]] (* The program generates the first 19 terms of the sequence. To generate more, increase the nn constant. *) (* Harvey P. Dale, Jul 03 2022 *)
  • PARI
    lista(nn) = {my(s = 0); for (n=1, nn, s += numdiv(n); if (!(s % n), print1(n, ", ")););} \\ Michel Marcus, Dec 14 2015
    
  • Sage
    def A050226_list(len):
        a, L = 0, []
        for n in (1..len):
            a += sigma(n,0)
            if n.divides(a): L.append(n)
        return L
    A050226_list(10000) # Peter Luschny, Dec 18 2015

Formula

m is in the sequence if Sum_{i = 1..m} d(i) = m*k, k an integer, where d(i) = number of divisors of i.

Extensions

More terms from Robert G. Wilson v, Sep 21 2000
Further terms from Naohiro Nomoto, Aug 03 2001
a(26)-a(30) from Donovan Johnson, Dec 21 2008

A085829 a(n) = least k such that the average number of divisors of {1..k} is >= n.

Original entry on oeis.org

1, 4, 15, 42, 120, 336, 930, 2548, 6930, 18870, 51300, 139440, 379080, 1030484, 2801202, 7614530, 20698132, 56264040, 152941824, 415739030, 1130096128, 3071920000, 8350344420, 22698590508, 61701166395, 167721158286, 455913379324, 1239301050624, 3368769533514
Offset: 1

Views

Author

Robert G. Wilson v, Jul 07 2003

Keywords

Comments

Does a(n+1)/a(n) converge to e?
Since the total number of divisors of {1..k} (see A006218) is k * (log(k) + 2*gamma - 1) + O(sqrt(k)), the average number of divisors of {1..k} approaches (log(k) + 2*gamma - 1). Since log(a(n)) + 2*gamma - 1 approaches n, a(n+1)/a(n) approaches e. - Jon E. Schoenfield, Aug 13 2007

Examples

			a(20) = 415739030 because the average number of divisors of {1..415739030} is >= 20.
		

References

  • Julian Havil, "Gamma: Exploring Euler's Constant", Princeton University Press, Princeton and Oxford, pp. 112-113, 2003.

Crossrefs

Programs

  • Mathematica
    s = 0; k = 1; Do[ While[s = s + DivisorSigma[0, k]; s < k*n, k++ ]; Print[k]; k++, {n, 1, 20}]
  • PARI
    A085829(n) = {local(s,k);s=1;k=1;while(sMichael B. Porter, Oct 23 2009

Extensions

Edited by Don Reble, Nov 06 2005
More terms from Jon E. Schoenfield, Aug 13 2007

A085831 a(n) = Sum_{k=1..2^n} d(k) where d(n) = number of divisors of n (A000005).

Original entry on oeis.org

1, 3, 8, 20, 50, 119, 280, 645, 1466, 3280, 7262, 15937, 34720, 75108, 161552, 345785, 736974, 1564762, 3311206, 6985780, 14698342, 30850276, 64607782, 135030018, 281689074, 586636098, 1219788256, 2532608855, 5251282902, 10874696106, 22493653324, 46475828418
Offset: 0

Views

Author

Robert G. Wilson v, Sep 21 2000

Keywords

Crossrefs

Programs

  • Mathematica
    k = s = 0; Do[ While[ k < 2^n, k++; s = s + DivisorSigma[ 0, k ]]; Print[s], {n, 0, 29} ]
  • PARI
    a(n) = sum(k=1, 2^n, numdiv(k)); \\ Michel Marcus, Oct 10 2021
  • Python
    from math import isqrt
    def A085831(n): return (lambda m, r: 2*sum(r//k for k in range(1, m+1))-m*m)(isqrt(2**n),2**n) # Chai Wah Wu, Oct 08 2021
    

A085567 Least m such that the average number of divisors of all integers from 1 to m equals n, or 0 if no such number exists.

Original entry on oeis.org

1, 4, 15, 42, 121, 336, 930, 2548, 6937, 0, 51322, 0, 379097, 0, 2801205, 0, 20698345, 56264090, 152941920, 0, 0, 0, 8350344420, 0, 61701166395, 0, 455913379395, 1239301050694, 3368769533660, 0, 24892027072619, 0, 183928584450999, 0, 0, 0
Offset: 1

Views

Author

Jason Earls, Jul 06 2003

Keywords

Comments

"In 1838 Lejeune Dirichlet (1805-1859) proved that (1/n)*sum_{r=1..n} #(divisors(r)), the average number of divisors of all integers from 1 to n, approaches ln n + 2gamma - 1 as n increases." [Havil]
a(n+1)/a(n) ~ e. - Robert G. Wilson v

Examples

			a(2) = 4 because (1/4)*(1+2+2+3) = 2.
		

References

  • Julian Havil, "Gamma: Exploring Euler's Constant", Princeton University Press, Princeton and Oxford, pp. 112-113, 2003.

Crossrefs

Extensions

Edited and extended by Robert G. Wilson v, Jul 07 2003
Corrected by Rick L. Shepherd, Aug 28 2003
Missing terms a(16)-a(17) and a(20)-a(29) added by Donovan Johnson, Dec 21 2008
a(30)-a(36) from Donovan Johnson, Jul 20 2011

A095256 Number of numbers not divisible by 10 that stay multiples of themselves when freed of their last n digits.

Original entry on oeis.org

23, 473, 7053, 93643, 1166714, 13969985, 162725300, 1857511487, 20877697534, 231802823099, 2548286736153, 27785452448917, 300880375389561, 3239062263180829, 34693207724723990, 369957928177109127, 3929837791070240044, 41600963003695964039, 439035480966899467108
Offset: 1

Views

Author

Lekraj Beedassy, Jul 02 2004

Keywords

Examples

			We have the following a(1)=23 two-digit numbers not ending in zero: 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 24, 26, 28, 33, 36, 39, 44, 48, 55, 66, 77, 88, 99; each is divisible by its tens digit.
		

Crossrefs

Cf. A057494.

Programs

  • Mathematica
    k = s = 0; Do[ While[ k < 10^n - 1, k++; s = s + DivisorSigma[ 0, k ]]; Print[s], {n, 9}] (* Robert G. Wilson v, Jun 05 2004 *)
  • Python
    from math import isqrt
    def A095256(n): return -(s:=isqrt(m:=10**n))**2+(sum(m//k for k in range(1,s+1))<<1)-(n+1)**2 # Chai Wah Wu, Oct 23 2023

Formula

a(n) = Sum_{r=1..10^n-1} tau(r) = A006218(A002283(n)).
a(n) = A057494(n) - (n+1)^2. - Max Alekseyev, Jan 25 2010

Extensions

a(5)-a(9) from Robert G. Wilson v, Jul 05 2004
a(10) onward from Max Alekseyev, Jan 25 2010, Aug 04 2015

A136364 a(n) = Sum_{ composite k, 1 <= k <= 10^n} (Number of divisors d of k with 1 < d < k).

Original entry on oeis.org

8, 283, 5070, 73669, 966751, 11970035, 142725365, 1657511569, 18877697635, 211802823221, 2348286736298, 25785452449087, 280880375389758, 3039062263181055, 32693207724724247, 349957928177109417, 3729837791070240369, 39600963003695964401, 419035480966899467509
Offset: 1

Views

Author

Enoch Haga, Dec 26 2007, Dec 29 2007

Keywords

Examples

			a(1) = 8 because there are 8 distinct divisors of composite numbers k through 10^1; these are for 4(1); 6(2); 8(2); 9(1); 10(2); and 1 + 2 + 2 + 1 + 2 = 8.
		

Crossrefs

Formula

a(n) = A057494(n) - 2*10^n + 1. - Max Alekseyev, May 10 2009

Extensions

Edited by N. J. A. Sloane, Jan 12 2008
Three more terms from Max Alekseyev, May 10 2009
a(10)-a(16) from Max Alekseyev, Jan 25 2010
a(17)-a(19) from Amiram Eldar, Aug 05 2024

A174425 Total number of divisors of all n-digit numbers.

Original entry on oeis.org

23, 450, 6580, 86590, 1073071, 12803271, 148755315, 1694786187, 19020186047, 210925125565, 2316483913054, 25237165712764, 273094922940644, 2938181887791268, 31454145461543161, 335264720452385137, 3559879862893130917, 37671125212625723995, 397434517963203503069
Offset: 1

Views

Author

Jaroslav Krizek, Nov 28 2010

Keywords

Comments

Partial sums are A095256.

Examples

			For n = 1; a(1) = 23 because tau (r) of 1-digit numbers r = 1 to 9: {1, 2, 2, 3, 2, 4, 2, 4, 3}. Sum is 23.
		

Crossrefs

Programs

  • PARI
    \\ too slow for n > 20; here b(n) is A006218(n).
    b(n)={sum(k=1, sqrtint(n), n\k)*2 - sqrtint(n)^2}
    a(n)={b(10^n-1)-b(10^(n-1)-1)} \\ Andrew Howroyd, Jan 13 2020

Formula

From Andrew Howroyd, Jan 13 2020: (Start)
a(n) = A006218(10^n-1) - A006218(10^(n-1)-1).
a(n) = A057494(n) - A057494(n-1) - 2*n - 1. (End)

Extensions

Terms a(11) and beyond from Andrew Howroyd, Jan 13 2020

A189020 a(n) = Sum_{k=1..10^n} tau_4(k), where tau_4 is the number of ordered factorizations into 4 factors (A007426).

Original entry on oeis.org

1, 89, 3575, 93237, 1951526, 35270969, 578262093, 8840109380, 128217432396, 1784942188189, 24045237260214, 315312623543840, 4042957241191810, 50862246063060180, 629513636928477232, 7681900592647818929, 92587253467765253144, 1103781870246459696784, 13031388731053572679450, 152516435040764735691556, 1771079109308495896176156
Offset: 0

Views

Author

Andrew Lelechenko, Apr 15 2011

Keywords

Comments

Using that tau_4 = tau_2 ** tau_2, where ** means Dirichlet convolution and tau_2 is (A000005), one can calculate a(n) faster than in O(10^n) operations - namely in O(10^(3n/4)) or even in O(10^(2n/3)). See links for details.

Crossrefs

Cf. A057494 - partial sums up to 10^n of the divisors function tau_2 (A000005), A180361 - of the unitary divisors function tau_2* (A034444), A180365 - of the 3-divisors function tau_3 (A007425).
Also see A072692 for such sums of the sum of divisors function (A000203), A084237 for sums of Moebius function (A008683), A064018 for sums of Euler totient function (A000010).

Formula

a(n) = A061202(10^n) = Sum_{k=1..10^n} A007426(n).

Extensions

a(16)-a(20) from Henri Lifchitz, Feb 05 2025
Showing 1-8 of 8 results.