cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A057494 a(n) = Sum_{k = 1..10^n} d(k) where d(n) = number of divisors of n (A000005).

Original entry on oeis.org

1, 27, 482, 7069, 93668, 1166750, 13970034, 162725364, 1857511568, 20877697634, 231802823220, 2548286736297, 27785452449086, 300880375389757, 3239062263181054, 34693207724724246, 369957928177109416, 3929837791070240368, 41600963003695964400, 439035480966899467508
Offset: 0

Views

Author

Robert G. Wilson v, Sep 21 2000

Keywords

Comments

The Polymath project describes an algorithm for computing a(n) in time O(2.154...^n), see Tao, Croot, and Helfgott link. - Charles R Greathouse IV, Apr 16 2012

Crossrefs

Programs

  • Mathematica
    k = s = 0; Do[ While[ k < 10^n, k++; s = s + DivisorSigma[ 0, k ] ]; Print[s], {n, 0, 8} ]
  • PARI
    a(n) = sum(k=1, 10^n, numdiv(k)); \\ Michel Marcus, Feb 19 2017
    
  • Python
    from math import isqrt
    def A057494(n): return -(s:=isqrt(m:=10**n))**2+(sum(m//k for k in range(1,s+1))<<1) # Chai Wah Wu, Oct 23 2023

Formula

a(n) = A006218(10^n). - Max Alekseyev, May 10 2009

Extensions

a(10)-a(16) from Max Alekseyev, Jan 25 2010
a(17)-a(19) from Donovan Johnson, Dec 26 2012
a(20)-a(27) from Hiroaki Yamanouchi, Sep 22 2015
a(28)-a(36) from Henri Lifchitz, Feb 19 2017

A153876 a(n) = Sum_{i=2^(n-1)..2^n-1} sigma_0(i), sigma_0(i) number of divisors of n, n positive integer.

Original entry on oeis.org

1, 4, 11, 29, 68, 160, 364, 820, 1813, 3981, 8674, 18782, 40387, 86443, 184232, 391188, 827787, 1746443, 3674573, 7712561, 16151933, 33757505, 70422235, 146659055, 304947023, 633152157, 1312820598, 2718674046, 5623413203, 11618957217, 23982175093, 49452872529
Offset: 1

Views

Author

Ctibor O. Zizka, Jan 03 2009

Keywords

Comments

This sequence tells how many binary numbers with n digits are there in the multiplication matrix [1,...,2^n -1]x[1,...,2^n -1]. In general, counting how many base-B numbers of length n are there in the multiplication matrix [1,...,B^n -1]x[1,...,B^n -1] gives a(n)= sum_{i=B^(n-1),(B^n)-1} sigma_0(i). Besides this motivation it is interesting to see the behavior of partial sums of sigma_0(i) on growing intervals : a(n)= sum_{i=f(n-1),f(n)} sigma_0(i).

Crossrefs

Programs

  • PARI
    a(n) = sum(i=2^(n-1), 2^n-1, numdiv(i)); \\ Michel Marcus, Oct 10 2021
    
  • Python
    from math import isqrt
    def A153876(n): return ((t:=isqrt(b:=(1<Chai Wah Wu, Oct 23 2023

Formula

a(n) = A085831(n) - A085831(n-1)-1. - R. J. Mathar, Jan 05 2009
a(n) = Sum_{k>=1} k * A346730(n,k). - Alois P. Heinz, Aug 01 2021

Extensions

a(14)-a(32) from Alois P. Heinz, Aug 01 2021

A062550 a(n) = Sum_{k = 1..2n} floor(2n/k).

Original entry on oeis.org

0, 3, 8, 14, 20, 27, 35, 41, 50, 58, 66, 74, 84, 91, 101, 111, 119, 127, 140, 146, 158, 168, 176, 186, 198, 207, 217, 227, 239, 247, 261, 267, 280, 292, 300, 312, 326, 332, 344, 356, 368, 377, 391, 399, 411, 425, 435, 443, 459, 467, 482, 492, 502, 514, 528
Offset: 0

Views

Author

Henry Bottomley, Jun 26 2001

Keywords

Comments

The sequence A006218 : Sum_{i=1..n} floor(n/i) = Sum_{i=1..n} sigma_0(i). Sigma_0(i) is A000005. Sequences of the type : Sum_{i=1..f(n)} floor(f(n)/i)= Sum_{i=1..f(n)} sigma_0(i). This sequence a(n)= A006218(2*n). [Ctibor O. Zizka, Mar 21 2009]
For n > 0: row sums of the triangle in A013942. - Reinhard Zumkeller, Jun 04 2013

Crossrefs

Programs

  • Haskell
    a062550 0 = 0
    a062550 n = sum $ a013942_row n  -- Reinhard Zumkeller, Jun 04 2013
    
  • Mathematica
    Table[Total[Floor[2*n/Range[2*n]]], {n, 0, 100}] (* T. D. Noe, Jun 12 2013 *)
  • PARI
    a(n) = sum(k=1, 2*n, (2*n)\k); \\ Michel Marcus, Oct 09 2021
  • Python
    from math import isqrt
    def A062550(n): return (lambda m: 2*sum(2*n//k for k in range(1, m+1))-m*m)(isqrt(2*n)) # Chai Wah Wu, Oct 09 2021
    

Formula

a(n) = A006218(2n) = A056549(n)+A006218(n) = a(n-1)+A000005(2n-1)+A000005(2n)

Extensions

Data corrected for n > 30 by Reinhard Zumkeller, Jun 04 2013

A175346 a(n) = Sum_{k=1..n^2} d(k), d(k) = number of divisors of k (A000005).

Original entry on oeis.org

1, 8, 23, 50, 87, 140, 201, 280, 373, 482, 605, 746, 897, 1070, 1261, 1466, 1689, 1932, 2189, 2468, 2761, 3074, 3405, 3764, 4127, 4518, 4925, 5360, 5807, 6276, 6757, 7262, 7789, 8342, 8915, 9502, 10107
Offset: 1

Views

Author

Ctibor O. Zizka, Apr 17 2010

Keywords

Comments

Generalized sequence: Sum_{k=1..T(n)} d(k). In this sequence T(n)=n^2, in A085831 T(n)=2^n, in A006218 T(n)=n. Other examples not in the OEIS: T(n)=p(n) n-th prime, T(n)=n*(n+1)/2 n-th triangular number, T(n)= F(n) n-th Fibonacci number, etc.

Crossrefs

Programs

  • Mathematica
    Table[Sum[DivisorSigma[0, k], {k, 1, n^2}], {n, 1, 80}] (* Carl Najafi, Aug 21 2011 *)
  • PARI
    a(n)=sum(k=1,n^2,numdiv(k)) \\ Charles R Greathouse IV, Aug 21 2011
    
  • Python
    def A175346(n): return (m:=n**2)+(sum(m//k for k in range(2,n+1))<<1) # Chai Wah Wu, Oct 24 2023

Formula

a(n) ~ 2n^2 log n. [Charles R Greathouse IV, Aug 21 2011]
a(n) = n^2 + 2*Sum_{k=2..n} floor(n^2/k). - Chai Wah Wu, Oct 24 2023

Extensions

More terms from Carl Najafi, Aug 21 2011

A158568 a(n) = Sum_{i=1..Fibonacci(n)} sigma_0(i) where sigma_0(n) is A000005(n).

Original entry on oeis.org

1, 1, 3, 5, 10, 20, 37, 70, 127, 231, 413, 746, 1307, 2295, 4010, 6957, 12031, 20712, 35514, 60718, 103500, 175989, 298539, 505399, 853777, 1439856, 2424299, 4075479, 6841787, 11470592, 19207624, 32126763, 53678285
Offset: 1

Views

Author

Ctibor O. Zizka, Mar 21 2009

Keywords

Crossrefs

Programs

  • Maple
    with(combinat):with(numtheory): A158568 := proc(n) return add(tau(i),i=1..fibonacci(n)): end: seq(A158568(n),n=1..20); # Nathaniel Johnston, May 09 2011
  • Mathematica
    Module[{nn=33,f,d},f=Fibonacci[nn];d=DivisorSigma[0,Range[f]];Table[ Total[ Take[d,n]],{n,Fibonacci[Range[nn]]}]] (* Harvey P. Dale, Apr 29 2018 *)
  • PARI
    a(n) = sum(k=1, fibonacci(n), numdiv(k)); \\ Michel Marcus, Feb 12 2019
    
  • Python
    from math import isqrt
    def A153568(n):
        a, b, = 0, 1
        for _ in range(n): a, b = b, a+b
        return (lambda m: 2*sum(a//k for k in range(1, m+1))-m*m)(isqrt(a)) # Chai Wah Wu, Oct 09 2021

Extensions

a(16)-a(33) from Nathaniel Johnston, May 09 2011
Showing 1-5 of 5 results.