cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A050226 Numbers m such that m divides Sum_{k = 1..m} A000005(k).

Original entry on oeis.org

1, 4, 5, 15, 42, 44, 47, 121, 336, 340, 347, 930, 2548, 6937, 6947, 51322, 379097, 379131, 379133, 2801205, 20698345, 56264090, 56264197, 152941920, 152942012, 8350344420, 61701166395, 455913379395, 455913379831, 1239301050694, 3368769533660, 3368769533812
Offset: 1

Views

Author

Labos Elemer, Dec 20 1999

Keywords

Examples

			For k = 15 the sum is 1 + 2 + 2 + 3 + 2 + 4 + 2 + 4 + 3 + 4 + 2 + 6 + 2 + 4 + 4 = 45 which is divisible by 15.
		

References

  • Julian Havil, "Gamma: Exploring Euler's Constant", Princeton University Press, Princeton and Oxford, pp. 112-113, 2003.

Crossrefs

Programs

  • Mathematica
    s = 0; Do[ s = s + DivisorSigma[ 0, n ]; If[ Mod[ s, n ] == 0, Print[ n ] ], {n, 1, 2*10^9} ]
    k=10^6; a[1]=1;a[n_]:=a[n]=DivisorSigma[0,n]+a[n-1]; nd=a/@Range@k; Select[Range@k,Divisible[nd[[#]],#]&] (* Ivan N. Ianakiev, Apr 30 2016 *)
    Module[{nn=400000},Select[Thread[{Range[nn],Accumulate[DivisorSigma[0,Range[nn]]]}],Divisible[#[[2]],#[[1]]]&]][[All,1]] (* The program generates the first 19 terms of the sequence. To generate more, increase the nn constant. *) (* Harvey P. Dale, Jul 03 2022 *)
  • PARI
    lista(nn) = {my(s = 0); for (n=1, nn, s += numdiv(n); if (!(s % n), print1(n, ", ")););} \\ Michel Marcus, Dec 14 2015
    
  • Sage
    def A050226_list(len):
        a, L = 0, []
        for n in (1..len):
            a += sigma(n,0)
            if n.divides(a): L.append(n)
        return L
    A050226_list(10000) # Peter Luschny, Dec 18 2015

Formula

m is in the sequence if Sum_{i = 1..m} d(i) = m*k, k an integer, where d(i) = number of divisors of i.

Extensions

More terms from Robert G. Wilson v, Sep 21 2000
Further terms from Naohiro Nomoto, Aug 03 2001
a(26)-a(30) from Donovan Johnson, Dec 21 2008

A057494 a(n) = Sum_{k = 1..10^n} d(k) where d(n) = number of divisors of n (A000005).

Original entry on oeis.org

1, 27, 482, 7069, 93668, 1166750, 13970034, 162725364, 1857511568, 20877697634, 231802823220, 2548286736297, 27785452449086, 300880375389757, 3239062263181054, 34693207724724246, 369957928177109416, 3929837791070240368, 41600963003695964400, 439035480966899467508
Offset: 0

Views

Author

Robert G. Wilson v, Sep 21 2000

Keywords

Comments

The Polymath project describes an algorithm for computing a(n) in time O(2.154...^n), see Tao, Croot, and Helfgott link. - Charles R Greathouse IV, Apr 16 2012

Crossrefs

Programs

  • Mathematica
    k = s = 0; Do[ While[ k < 10^n, k++; s = s + DivisorSigma[ 0, k ] ]; Print[s], {n, 0, 8} ]
  • PARI
    a(n) = sum(k=1, 10^n, numdiv(k)); \\ Michel Marcus, Feb 19 2017
    
  • Python
    from math import isqrt
    def A057494(n): return -(s:=isqrt(m:=10**n))**2+(sum(m//k for k in range(1,s+1))<<1) # Chai Wah Wu, Oct 23 2023

Formula

a(n) = A006218(10^n). - Max Alekseyev, May 10 2009

Extensions

a(10)-a(16) from Max Alekseyev, Jan 25 2010
a(17)-a(19) from Donovan Johnson, Dec 26 2012
a(20)-a(27) from Hiroaki Yamanouchi, Sep 22 2015
a(28)-a(36) from Henri Lifchitz, Feb 19 2017

A085831 a(n) = Sum_{k=1..2^n} d(k) where d(n) = number of divisors of n (A000005).

Original entry on oeis.org

1, 3, 8, 20, 50, 119, 280, 645, 1466, 3280, 7262, 15937, 34720, 75108, 161552, 345785, 736974, 1564762, 3311206, 6985780, 14698342, 30850276, 64607782, 135030018, 281689074, 586636098, 1219788256, 2532608855, 5251282902, 10874696106, 22493653324, 46475828418
Offset: 0

Views

Author

Robert G. Wilson v, Sep 21 2000

Keywords

Crossrefs

Programs

  • Mathematica
    k = s = 0; Do[ While[ k < 2^n, k++; s = s + DivisorSigma[ 0, k ]]; Print[s], {n, 0, 29} ]
  • PARI
    a(n) = sum(k=1, 2^n, numdiv(k)); \\ Michel Marcus, Oct 10 2021
  • Python
    from math import isqrt
    def A085831(n): return (lambda m, r: 2*sum(r//k for k in range(1, m+1))-m*m)(isqrt(2**n),2**n) # Chai Wah Wu, Oct 08 2021
    

A328331 a(n) is the least k such that the average number of unitary divisors of {1..k} is >= n.

Original entry on oeis.org

1, 6, 35, 190, 1015, 5304, 27417, 142142, 736782, 3816852, 19774690, 102446730, 530743749, 2749606626, 14244797910
Offset: 1

Views

Author

Amiram Eldar, Oct 22 2019

Keywords

Comments

The unitary version of A085829.

Examples

			a(2) = 6 because the average number of unitary divisors of {1..6} is  A064608(6)/6 = 13/6 > 2.
		

Crossrefs

Programs

  • Mathematica
    seq={}; s = 0; k = 1; Do[While[s += 2^PrimeNu[k]; s < k*n, k++]; AppendTo[seq, k]; k++, {n, 1, 10}]; seq

Formula

Lim_{n->oo} a(n+1)/a(n) = exp(zeta(2)) = exp(Pi^2/6) = 5.180668... (since A064608(n) ~ n*log(n)/zeta(2)).

A085567 Least m such that the average number of divisors of all integers from 1 to m equals n, or 0 if no such number exists.

Original entry on oeis.org

1, 4, 15, 42, 121, 336, 930, 2548, 6937, 0, 51322, 0, 379097, 0, 2801205, 0, 20698345, 56264090, 152941920, 0, 0, 0, 8350344420, 0, 61701166395, 0, 455913379395, 1239301050694, 3368769533660, 0, 24892027072619, 0, 183928584450999, 0, 0, 0
Offset: 1

Views

Author

Jason Earls, Jul 06 2003

Keywords

Comments

"In 1838 Lejeune Dirichlet (1805-1859) proved that (1/n)*sum_{r=1..n} #(divisors(r)), the average number of divisors of all integers from 1 to n, approaches ln n + 2gamma - 1 as n increases." [Havil]
a(n+1)/a(n) ~ e. - Robert G. Wilson v

Examples

			a(2) = 4 because (1/4)*(1+2+2+3) = 2.
		

References

  • Julian Havil, "Gamma: Exploring Euler's Constant", Princeton University Press, Princeton and Oxford, pp. 112-113, 2003.

Crossrefs

Extensions

Edited and extended by Robert G. Wilson v, Jul 07 2003
Corrected by Rick L. Shepherd, Aug 28 2003
Missing terms a(16)-a(17) and a(20)-a(29) added by Donovan Johnson, Dec 21 2008
a(30)-a(36) from Donovan Johnson, Jul 20 2011

A338891 a(n) is the least number k such that the average number of odd divisors of {1..k} is >= n.

Original entry on oeis.org

1, 21, 165, 1274, 9435, 69720, 515230, 3807265, 28132035, 207869515, 1535959665, 11349295155, 83860579775
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 14 2020

Keywords

Examples

			a(5) = 9435 because the average number of odd divisors of {1..9435} is >= 5.
		

Crossrefs

Programs

  • Mathematica
    m = 1; sum = 0; s = {}; Do[sum += DivisorSigma[0, k/2^IntegerExponent[k, 2]]; If[sum >= m*k, AppendTo[s, k]; m++], {k, 1, 10^6}]; s (* Amiram Eldar, Nov 15 2020 *)
  • PARI
    a(n) = my(s=1, k=1); while(s>valuation(k, 2))); k; \\ Michel Marcus, Nov 14 2020

Formula

a(n+1)/a(n) approaches e^2.

Extensions

a(11)-a(12) from Amiram Eldar, Nov 16 2020
a(13) from Bill McEachen, Sep 01 2025

A338943 a(n) is the least number k such that the average number of distinct prime divisors of {1..k} is >= n.

Original entry on oeis.org

1, 6, 455, 8167302
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 17 2020

Keywords

Comments

10^18 < a(4) < 10^19. - Daniel Suteu, Nov 17 2020

Examples

			a(2) = 455 because the average number of distinct prime divisors of {1..455} is >= 2.
		

Crossrefs

A336304 a(n) is the least number k such that the average number of prime divisors of {1..k} counted with multiplicity is >= n.

Original entry on oeis.org

1, 4, 32, 2178, 416417176
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 18 2020

Keywords

Examples

			a(1) = 4 since the average number of prime divisors of {1..4} counted with multiplicity equals (0 + 1 + 1 + 2)/4 = 1 which is >= 1 and this is the least such number.
a(3) = 2178 because the average number of prime divisors of {1..2178} counted with multiplicity is >= 3 and this is the least such number.
		

Crossrefs

Programs

  • Mathematica
    s[n_] := Module[{m = 0, c = 0, k = 1, sum = 0, seq = {}}, While[c < n, sum += PrimeOmega[k]; If[sum >= m*k, c++; AppendTo[seq, k]; m++]; k++]; seq]; s[4] (* Amiram Eldar, Nov 18 2020 *)
  • PARI
    a(n)=my(m=0,k=1);while(k>0, m+=bigomega(k); if(m>=k*n,break);k++);k \\ Derek Orr, Nov 18 2020

A344272 a(n) is the least k such that the average number of nonunitary divisors of {1..k} is >= n.

Original entry on oeis.org

54, 816, 10530, 135200, 1733760, 22216752, 284685408, 3647978320, 46745561100, 599002268832, 7675674748560
Offset: 1

Views

Author

Amiram Eldar, May 13 2021

Keywords

Examples

			a(1) = 54 since the average of the number of nonunitary divisors of {1..54} is (Sum_{k=1..54} A056175(k))/54 = 1.
		

Crossrefs

The nonunitary version of A085829.
Similar sequences: A328331, A336304, A338891, A338943, A344273, A344274.

Programs

  • Mathematica
    nd[n_] := DivisorSigma[0,n] - 2^PrimeNu[n]; seq={}; s = 0; k = 1; Do[While[s = s + nd[k]; s < k*n, k++]; AppendTo[seq, k]; k++, {n, 1, 5}]; seq

Formula

Lim_{n->oo} a(n+1)/a(n) = exp(1/(1-1/zeta(2))) = exp(Pi^2/(Pi^2-6)) = 12.8140996101...

Extensions

a(10)-a(11) from Martin Ehrenstein, May 23 2021

A344273 a(n) is the least k such that the average number of bi-unitary divisors of {1..k} is >= n.

Original entry on oeis.org

1, 6, 24, 80, 273, 960, 3336, 11480, 39648, 136952, 472416, 1630164, 5625480, 19412736, 66992016, 231184800, 797806152, 2753187210, 9501109380, 32787848746
Offset: 1

Views

Author

Amiram Eldar, May 13 2021

Keywords

Examples

			a(2) = 6 since the average number of bi-unitary divisors of {1..6} is A306069(6)/6 = 13/6 > 2.
		

Crossrefs

The unitary version of A085829.
Similar sequences: A328331, A336304, A338891, A338943, A344272, A344274.

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], e + 1, e]; bdivnum[1] = 1; bdivnum[n_] := Times @@ (f @@@ FactorInteger[n]); seq={}; s = 0; k = 1; Do[While[s = s + bdivnum[k]; s < k*n, k++]; AppendTo[seq, k]; k++, {n, 1, 10}]; seq

Formula

Lim_{n->oo} a(n+1)/a(n) = exp(1/A) = 3.4509501567..., where A is A306071.
Showing 1-10 of 11 results. Next