cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A053338 a(n) contains n digits (either '6' or '9') and is divisible by 2^n.

Original entry on oeis.org

6, 96, 696, 9696, 69696, 669696, 6669696, 96669696, 696669696, 9696669696, 69696669696, 969696669696, 9969696669696, 69969696669696, 969969696669696, 9969969696669696, 99969969696669696, 999969969696669696
Offset: 1

Views

Author

Henry Bottomley, Mar 06 2000

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Select[FromDigits/@Tuples[{6,9},n],Mod[#,2^n]==0&],{n,20}]//Flatten (* Harvey P. Dale, Sep 15 2023 *)

Formula

a(n)=a(n-1)+10^(n-1)*(6+3*[a(n-1)/2^(n-1) mod 2]) i.e. a(n) ends with a(n-1); if (n-1)-th term is divisible by 2^n then n-th term begins with a 6, if not then n-th term begins with a 9.

A053376 a(n) contains n digits (either '1' or '8') and is divisible by 2^n.

Original entry on oeis.org

8, 88, 888, 1888, 81888, 181888, 8181888, 18181888, 118181888, 8118181888, 88118181888, 888118181888, 8888118181888, 88888118181888, 888888118181888, 1888888118181888, 81888888118181888, 181888888118181888
Offset: 1

Views

Author

Henry Bottomley, Mar 06 2000

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Select[FromDigits/@Tuples[{1,8},n],Divisible[#,2^n]&],{n,20}]// Flatten (* Harvey P. Dale, Aug 20 2017 *)

Formula

a(n)=a(n-1)+10^(n-1)*(8-7*[a(n-1)/2^(n-1) mod 2]) i.e. a(n) ends with a(n-1); if (n-1)-th term is divisible by 2^n then n-th term begins with an 8, if not then n-th term begins with a 1.

A053380 a(n) contains n digits (either '8' or '9') and is divisible by 2^n.

Original entry on oeis.org

8, 88, 888, 9888, 89888, 989888, 9989888, 89989888, 989989888, 8989989888, 98989989888, 898989989888, 8898989989888, 98898989989888, 998898989989888, 8998898989989888, 98998898989989888, 898998898989989888
Offset: 1

Views

Author

Henry Bottomley, Mar 06 2000

Keywords

Crossrefs

Formula

a(n)=a(n-1)+10^(n-1)*(8+[a(n-1)/2^(n-1) mod 2]) i.e. a(n) ends with a(n-1); if (n-1)-th term is divisible by 2^n then n-th term begins with an 8, if not then n-th term begins with a 9.

A045583 Numbers k that divide 10^k + 2^k.

Original entry on oeis.org

1, 2, 3, 4, 8, 9, 16, 21, 26, 27, 32, 63, 64, 81, 128, 136, 147, 189, 243, 256, 338, 441, 512, 567, 609, 729, 903, 1024, 1029, 1252, 1323, 1378, 1701, 1827, 2048, 2187, 2312, 2667, 2709, 3087, 3969, 4096, 4263, 4394, 4401, 5103, 5481, 6321, 6561, 7203, 8001
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A050621.

Programs

  • Mathematica
    Select[Range[8100],Divisible[10^#+2^#,#]&]  (* Harvey P. Dale, Apr 02 2011 *)
    Select[Range[8001], Divisible[PowerMod[2, #, #] + PowerMod[10, #, #], #] &] (* Amiram Eldar, Oct 23 2021 *)

A053313 a(n) contains n digits (either '2' or '9') and is divisible by 2^n.

Original entry on oeis.org

2, 92, 992, 2992, 92992, 292992, 2292992, 22292992, 222292992, 2222292992, 22222292992, 922222292992, 9922222292992, 29922222292992, 929922222292992, 9929922222292992, 99929922222292992, 999929922222292992
Offset: 1

Views

Author

Henry Bottomley, Mar 06 2000

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Flatten[Table[FromDigits/@Tuples[{2,9},n],{n,18}]],Divisible[ #,2^IntegerLength[ #]]&] (* Harvey P. Dale, Feb 07 2015 *)

Formula

a(n)=a(n-1)+10^(n-1)*(2+7*[a(n-1)/2^(n-1) mod 2]) i.e. a(n) ends with a(n-1); if (n-1)-th term is divisible by 2^n then n-th term begins with a 2, if not then n-th term begins with a 7.

A053314 a(n) contains n digits (either '1' or '4') and is divisible by 2^n.

Original entry on oeis.org

4, 44, 144, 4144, 14144, 414144, 1414144, 41414144, 441414144, 1441414144, 11441414144, 411441414144, 4411441414144, 44411441414144, 444411441414144, 1444411441414144, 41444411441414144, 441444411441414144
Offset: 1

Views

Author

Henry Bottomley, Mar 06 2000

Keywords

Crossrefs

Programs

  • Maple
    A[1]:= 4:
    for n from 2 to 100 do
       if A[n-1] mod 2^n = 0 then A[n]:= A[n-1]+4*10^(n-1)
       else A[n]:= A[n-1]+10^(n-1)
    fi
    od:
    seq(A[i],i=1..100); # Robert Israel, Oct 27 2019
  • Mathematica
    nxt[{n_,a_}]:={n+1,If[Divisible[a,2^(n+1)],4*10^IntegerLength[a]+ a, 10^IntegerLength[ a]+a]}; NestList[nxt,{1,4},20][[All,2]] (* Harvey P. Dale, Oct 30 2022 *)

Formula

a(n) = a(n-1) + 10^(n-1)*(4 - 3*(a(n-1)/2^(n-1) mod 2)), i.e., a(n) ends with a(n-1); if (n-1)-th term is divisible by 2^n then n-th term begins with a 4, if not then n-th term begins with a 1.

Extensions

Formula corrected by Robert Israel, Oct 27 2019

A053315 a(n) contains n digits (either '4' or '5') and is divisible by 2^n.

Original entry on oeis.org

4, 44, 544, 4544, 44544, 444544, 4444544, 54444544, 454444544, 5454444544, 45454444544, 545454444544, 5545454444544, 55545454444544, 555545454444544, 4555545454444544, 44555545454444544, 544555545454444544
Offset: 1

Views

Author

Henry Bottomley, Mar 06 2000

Keywords

Crossrefs

Programs

  • Maple
    A[1]:= 4:
    for n from 2 to 100 do
       if A[n-1] mod 2^n = 0 then A[n]:= A[n-1]+4*10^(n-1)
       else A[n]:= A[n-1]+5*10^(n-1)
    fi
    od:
    seq(A[i],i=1..100); # Robert Israel, Oct 27 2019

Formula

a(n) = a(n-1) + 10^(n-1)*(4 + (a(n-1)/2^(n-1) mod 2)), i.e., a(n) ends with a(n-1); if (n-1)-th term is divisible by 2^n then n-th term begins with a 4, if not then n-th term begins with a 5.

Extensions

Formula corrected by Robert Israel, Oct 27 2019

A053333 a(n) contains n digits (either '4' or '9') and is divisible by 2^n.

Original entry on oeis.org

4, 44, 944, 4944, 94944, 994944, 4994944, 94994944, 494994944, 9494994944, 49494994944, 449494994944, 9449494994944, 99449494994944, 499449494994944, 9499449494994944, 49499449494994944, 949499449494994944
Offset: 1

Views

Author

Henry Bottomley, Mar 06 2000

Keywords

Crossrefs

Programs

  • Mathematica
    nxt[{n_,a_}]:=Module[{fd=If[Mod[a,2^(n+1)]==0,4,9]},{n+1,fd 10^IntegerLength[a]+a}]; NestList[ nxt,{1,4},20][[;;,2]] (* Harvey P. Dale, Jul 14 2023 *)

Formula

a(n)=a(n-1)+10^(n-1)*(4+5*[a(n-1)/2^(n-1) mod 2]) i.e. a(n) ends with a(n-1); if (n-1)-th term is divisible by 2^n then n-th term begins with a 4, if not then n-th term begins with a 9.

A053334 a(n) contains n digits (either '1' or '6') and is divisible by 2^n.

Original entry on oeis.org

6, 16, 616, 1616, 11616, 111616, 6111616, 16111616, 616111616, 1616111616, 61616111616, 661616111616, 1661616111616, 61661616111616, 661661616111616, 6661661616111616, 66661661616111616, 666661661616111616
Offset: 1

Views

Author

Henry Bottomley, Mar 06 2000

Keywords

Crossrefs

Programs

  • Mathematica
    nxt[{n_,a_}]:={n+1,a+10^n (6-5*Mod[a/2^n,2])}; NestList[nxt,{1,6},20][[;;,2]] (* Harvey P. Dale, Aug 20 2025 *)

Formula

a(n)=a(n-1)+10^(n-1)*(6-5*[a(n-1)/2^(n-1) mod 2]) i.e. a(n) ends with a(n-1); if (n-1)-th term is divisible by 2^n then n-th term begins with a 6, if not then n-th term begins with a 1.

A053335 a(n) contains n digits (either '3' or '6') and is divisible by 2^n.

Original entry on oeis.org

6, 36, 336, 6336, 66336, 366336, 6366336, 36366336, 636366336, 3636366336, 33636366336, 333636366336, 3333636366336, 33333636366336, 633333636366336, 3633333636366336, 33633333636366336, 333633333636366336
Offset: 1

Views

Author

Henry Bottomley, Mar 06 2000

Keywords

Crossrefs

Formula

a(n)=a(n-1)+10^(n-1)*(6-3*[a(n-1)/2^(n-1) mod 2]) i.e. a(n) ends with a(n-1); if (n-1)-th term is divisible by 2^n then n-th term begins with a 6, if not then n-th term begins with a 3.
Previous Showing 11-20 of 26 results. Next