cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A051086 Primes p such that x^34 = -2 has a solution mod p.

Original entry on oeis.org

2, 3, 11, 17, 19, 41, 43, 59, 67, 73, 83, 89, 97, 107, 113, 131, 139, 163, 179, 193, 211, 227, 233, 241, 251, 257, 281, 283, 313, 331, 337, 347, 353, 379, 401, 419, 433, 449, 457, 467, 491, 499, 521, 523, 547, 563, 569, 571, 577, 587, 593, 601, 617, 619, 641, 643, 659, 673, 683, 691, 739, 761, 769, 787, 809, 811, 827, 857, 859, 881, 883, 907, 929, 937, 947, 971, 977, 1009
Offset: 1

Views

Author

Keywords

Comments

Complement of A216748 relative to A000040. - Vincenzo Librandi, Sep 17 2012

Programs

  • Magma
    [p: p in PrimesUpTo(1010) | exists(t){x : x in ResidueClassRing(p) | x^34 eq - 2}]; // Vincenzo Librandi, Sep 15 2012
  • Mathematica
    ok[p_]:= Reduce[Mod[x^34 + 2, p] == 0, x, Integers] =!= False; Select[Prime[Range[400]], ok] (* Vincenzo Librandi, Sep 15 2012 *)
  • PARI
    /* see A051071 */
    

Extensions

More terms from Joerg Arndt, Jul 27 2011

A051087 Primes p such that x^36 = -2 has a solution mod p.

Original entry on oeis.org

2, 3, 11, 43, 59, 83, 89, 107, 113, 131, 179, 227, 233, 251, 257, 281, 283, 347, 353, 419, 443, 467, 491, 499, 563, 587, 593, 601, 617, 643, 659, 683, 691, 827, 881, 947, 971, 1019, 1049, 1051, 1091, 1097, 1163, 1187, 1193, 1217, 1259, 1283, 1289, 1307, 1427, 1433, 1451, 1481, 1499, 1523
Offset: 1

Views

Author

Keywords

Comments

Complement of A216749 relative to A000040. - Vincenzo Librandi, Sep 17 2012

Programs

  • Magma
    [p: p in PrimesUpTo(1525) | exists(t){x : x in ResidueClassRing(p) | x^36 eq - 2}]; // Vincenzo Librandi, Sep 15 2012
  • Mathematica
    ok[p_]:= Reduce[Mod[x^36 + 2, p] == 0, x, Integers] =!= False; Select[Prime[Range[500]], ok] (* Vincenzo Librandi, Sep 15 2012 *)
  • PARI
    /* see A051071 */
    

Extensions

More terms from Joerg Arndt, Jul 27 2011

A051088 Primes p such that x^38 = -2 has a solution mod p.

Original entry on oeis.org

2, 3, 11, 17, 19, 41, 43, 59, 67, 73, 83, 89, 97, 107, 113, 131, 137, 139, 163, 179, 193, 211, 227, 233, 241, 251, 257, 281, 283, 307, 313, 331, 337, 347, 353, 379, 401, 409, 433, 443, 449, 467, 491, 499, 521, 523, 547, 563, 569, 577, 587, 593, 601, 617, 619, 641, 643, 659, 673, 683, 691, 739, 769, 787, 809, 811, 827, 857, 859, 881, 883, 907, 929, 937, 947, 953, 971, 977, 1009
Offset: 1

Views

Author

Keywords

Comments

Complement of A216750 relative to A000040. - Vincenzo Librandi, Sep 17 2012

Programs

  • Magma
    [p: p in PrimesUpTo(1010) | exists(t){x : x in ResidueClassRing(p) | x^38 eq - 2}]; // Vincenzo Librandi, Sep 15 2012
  • Mathematica
    ok[p_]:= Reduce[Mod[x^38 + 2, p] == 0, x, Integers] =!= False; Select[Prime[Range[400]], ok] (* Vincenzo Librandi, Sep 15 2012 *)
  • PARI
    /* see A051071 */
    

Extensions

More terms from Joerg Arndt, Jul 27 2011

A051089 Primes p such that x^40 = -2 has a solution mod p.

Original entry on oeis.org

2, 3, 19, 43, 59, 67, 83, 107, 139, 163, 179, 227, 251, 257, 283, 307, 337, 347, 379, 419, 443, 467, 499, 523, 547, 563, 571, 587, 617, 619, 643, 659, 683, 739, 787, 827, 859, 883, 907, 947, 971, 1019, 1033, 1049, 1097, 1123, 1163, 1187, 1193, 1217, 1249, 1259, 1283, 1307, 1427, 1459, 1483, 1499, 1523
Offset: 1

Views

Author

Keywords

Comments

Complement of A216751 relative to A000040. - Vincenzo Librandi, Sep 17 2012

Programs

  • Magma
    [p: p in PrimesUpTo(1525) | exists(t){x : x in ResidueClassRing(p) | x^40 eq - 2}]; // Vincenzo Librandi, Sep 15 2012
  • Mathematica
    ok[p_]:= Reduce[Mod[x^40 + 2, p] == 0, x, Integers] =!= False; Select[Prime[Range[400]], ok] (* Vincenzo Librandi, Sep 15 2012 *)
  • PARI
    /* see A051071 */
    

Extensions

More terms from Joerg Arndt, Jul 27 2011

A051090 Primes p such that x^42 = -2 has a solution mod p.

Original entry on oeis.org

2, 3, 11, 17, 41, 59, 83, 89, 107, 131, 137, 179, 227, 233, 251, 257, 283, 307, 347, 353, 401, 419, 433, 443, 457, 467, 499, 521, 563, 569, 587, 593, 601, 641, 643, 683, 691, 739, 761, 809, 811, 857, 881, 929, 947, 953, 971, 977, 1019, 1049, 1091, 1097, 1163
Offset: 1

Views

Author

Keywords

Comments

Complement of A216752 relative to A000040. - Vincenzo Librandi, Sep 17 2012

Programs

  • Magma
    [p: p in PrimesUpTo(1250) | exists(t){x : x in ResidueClassRing(p) | x^42 eq - 2}]; // Vincenzo Librandi, Sep 16 2012
  • Mathematica
    ok[p_]:=Reduce[Mod[x^42+2,p]==0,x,Integers]=!=False;Select[Prime[Range[400]],ok] (* Vincenzo Librandi, Sep 16 2012 *)
  • PARI
    /* see A051071 */
    

Extensions

More terms from Joerg Arndt, Jul 27 2011

A051091 Primes p such that x^44 = -2 has a solution mod p.

Original entry on oeis.org

2, 3, 11, 19, 43, 59, 73, 83, 107, 113, 131, 139, 163, 179, 211, 227, 233, 251, 257, 281, 283, 307, 331, 337, 347, 379, 443, 467, 491, 499, 523, 547, 563, 571, 577, 587, 593, 601, 619, 643, 659, 691, 739, 787, 811, 827, 883, 907, 937, 971, 1019, 1033, 1049, 1051, 1091, 1097, 1153
Offset: 1

Views

Author

Keywords

Comments

Complement of A216753 relative to A000040. - Vincenzo Librandi, Sep 17 2012

Programs

  • Magma
    [p: p in PrimesUpTo(1200) | exists(t){x : x in ResidueClassRing(p) | x^44 eq - 2}]; // Vincenzo Librandi, Sep 16 2012
  • Mathematica
    ok[p_]:= Reduce[Mod[x^44 + 2, p] == 0, x, Integers] =!= False;Select[Prime[Range[400]], ok] (* Vincenzo Librandi, Sep 16 2012 *)
  • PARI
    /* see A051071 */
    

Extensions

More terms from Joerg Arndt, Jul 27 2011

A051092 Primes p such that x^46 = -2 has a solution mod p.

Original entry on oeis.org

2, 3, 11, 17, 19, 41, 43, 59, 67, 73, 83, 89, 97, 107, 113, 131, 137, 163, 179, 193, 211, 227, 233, 241, 251, 257, 281, 283, 307, 313, 331, 337, 347, 353, 379, 401, 409, 419, 433, 443, 449, 457, 467, 491, 499, 521, 523, 547, 563, 569, 571, 577, 587, 593, 601, 617, 619, 641, 643, 659, 673, 683, 739, 761, 769, 787, 809, 811, 827, 857, 859, 881, 883, 907, 929, 937, 947, 953, 971, 977, 1009
Offset: 1

Views

Author

Keywords

Comments

Complement of A216768 relative to A000040. - Vincenzo Librandi, Sep 17 2012

Programs

  • Magma
    [p: p in PrimesUpTo(1010) | exists(t){x : x in ResidueClassRing(p) | x^46 eq - 2}]; // Vincenzo Librandi, Sep 16 2012
  • Mathematica
    ok[p_]:= Reduce[Mod[x^46 + 2, p] == 0, x, Integers] =!= False; Select[Prime[Range[400]], ok] (* Vincenzo Librandi, Sep 16 2012 *)
  • PARI
    /* see A051071 */
    

Extensions

More terms from Joerg Arndt, Jul 27 2011

A051093 Primes p such that x^48 = -2 has a solution mod p.

Original entry on oeis.org

2, 3, 11, 43, 59, 83, 107, 131, 179, 227, 251, 257, 281, 283, 307, 347, 419, 443, 467, 491, 499, 563, 587, 617, 643, 659, 683, 691, 739, 811, 827, 947, 971, 1019, 1049, 1051, 1091, 1097, 1163, 1187, 1193, 1259, 1283, 1307, 1427, 1451, 1459, 1481, 1499, 1523
Offset: 1

Views

Author

Keywords

Comments

Complement of A216769 relative to A000040. - Vincenzo Librandi, Sep 17 2012

Programs

  • Magma
    [p: p in PrimesUpTo(1550) | exists(t){x : x in ResidueClassRing(p) | x^48 eq - 2}]; // Vincenzo Librandi, Sep 16 2012
  • Maple
    isA051093 := proc(p) local x; for x from 0 to p-1 do if (x^48 mod p) = (-2 mod p) then RETURN(true) ; fi; od: RETURN(false) ; end: for i from 1 to 300 do p := ithprime(i) ; if isA051093(p) then printf("%d,",p) ; fi; od: # R. J. Mathar, Oct 15 2008
  • Mathematica
    ok[p_]:= Reduce[Mod[x^48 + 2, p] == 0, x, Integers] =!= False; Select[Prime[Range[500]], ok] (* Vincenzo Librandi, Sep 16 2012 *)
  • PARI
    /* see A051071 */
    

Extensions

Extended by R. J. Mathar, Oct 15 2008

A051094 Primes p such that x^50 = -2 has a solution mod p.

Original entry on oeis.org

2, 3, 17, 19, 43, 59, 67, 73, 83, 89, 97, 107, 113, 137, 139, 163, 179, 193, 227, 233, 241, 257, 283, 307, 313, 337, 347, 353, 379, 409, 419, 433, 443, 449, 457, 467, 499, 523, 547, 563, 569, 571, 577, 587, 593, 617, 619, 641, 643, 659, 673, 683, 739, 769, 787, 809, 827, 857, 859, 883, 907, 929, 937, 947, 953, 971, 977, 1009, 1019, 1033, 1049
Offset: 1

Views

Author

Keywords

Comments

Complement of A216770 relative to A000040. - Vincenzo Librandi, Sep 17 2012

Programs

  • Magma
    [p: p in PrimesUpTo(1050) | exists(t){x : x in ResidueClassRing(p) | x^50 eq - 2}]; // Vincenzo Librandi, Sep 16 2012
  • Mathematica
    ok[p_]:= Reduce[Mod[x^50 + 2, p] == 0, x, Integers] =!= False; Select[Prime[Range[400]], ok] (* Vincenzo Librandi, Sep 16 2012 *)
  • PARI
    /* see A051071 */
    

Extensions

More terms from Joerg Arndt, Jul 27 2011

A051095 Primes p such that x^52 = -2 has a solution mod p.

Original entry on oeis.org

2, 3, 11, 19, 43, 59, 67, 73, 83, 89, 107, 113, 139, 163, 179, 211, 227, 233, 251, 257, 281, 283, 307, 331, 337, 347, 353, 379, 419, 467, 491, 499, 523, 563, 571, 577, 587, 593, 601, 617, 619, 643, 659, 683, 691, 739, 787, 811, 827, 881, 883, 907, 947, 971, 1019, 1033, 1049, 1051, 1091, 1097
Offset: 1

Views

Author

Keywords

Comments

Complement of A216771 relative to A000040. - Vincenzo Librandi, Sep 17 2012

Programs

  • Magma
    [p: p in PrimesUpTo(1100) | exists(t){x : x in ResidueClassRing(p) | x^52 eq - 2}]; // Vincenzo Librandi, Sep 16 2012
  • Mathematica
    ok[p_]:= Reduce[Mod[x^52 + 2, p] == 0, x, Integers] =!= False; Select[Prime[Range[500]], ok] (* Vincenzo Librandi, Sep 16 2012 *)
  • PARI
    /* see A051071 */
    

Extensions

More terms from Joerg Arndt, Jul 27 2011
Previous Showing 11-20 of 24 results. Next