A051187
Generalized Stirling number triangle of the first kind.
Original entry on oeis.org
1, -8, 1, 128, -24, 1, -3072, 704, -48, 1, 98304, -25600, 2240, -80, 1, -3932160, 1122304, -115200, 5440, -120, 1, 188743680, -57802752, 6651904, -376320, 11200, -168, 1, -10569646080, 3425697792, -430309376, 27725824, -1003520, 20608, -224, 1
Offset: 1
Triangle T(n,m) (with rows n >= 1 and columns m = 1..n) begins:
1;
-8, 1;
128, -24, 1;
-3072, 704, -48, 1;
98304, -25600, 2240, -80, 1;
-3932160, 1122304, -115200, 5440, -120, 1;
188743680, -57802752, 6651904, -376320, 11200, -168, 1;
...
3rd row o.g.f.: E(3,x) = Product_{j=0..2} (x - 8*j) = 128*x - 24*x^2 + x^3.
- D. S. Mitrinovic, Sur une classe de nombres reliés aux nombres de Stirling, Comptes rendus de l'Académie des sciences de Paris, t. 252 (1961), 2354-2356.
- D. S. Mitrinovic and R. S. Mitrinovic, Sur les polynômes de Stirling, Bulletin de la Société des mathématiciens et physiciens de la R. P. de Serbie, t. 10 (1958), 43-49.
- D. S. Mitrinovic and R. S. Mitrinovic, Sur les nombres de Stirling et les nombres de Bernoulli d'ordre supérieur, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 43 (1960), 1-63.
- D. S. Mitrinovic and R. S. Mitrinovic, Sur une classe de nombres se rattachant aux nombres de Stirling--Appendice: Table des nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 60 (1961), 1-15 and 17-62.
- D. S. Mitrinovic and R. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 77 (1962), 1-77.
- D. S. Mitrinovic and R. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., No. 77 (1962), 1-77 [jstor stable version].
- Niels Nörlund, Vorlesungen über Differenzenrechnung, Springer, Berlin, 1924.
First (m=1) column sequence is:
A051189(n-1).
Row sums (signed triangle):
A049210(n-1)*(-1)^(n-1).
Row sums (unsigned triangle):
A045755(n).
A203412
Triangle read by rows, a(n,k), n>=k>=1, which represent the s=3, h=1 case of a two-parameter generalization of Stirling numbers arising in conjunction with normal ordering.
Original entry on oeis.org
1, 1, 1, 4, 3, 1, 28, 19, 6, 1, 280, 180, 55, 10, 1, 3640, 2260, 675, 125, 15, 1, 58240, 35280, 10360, 1925, 245, 21, 1, 1106560, 658000, 190680, 35385, 4620, 434, 28, 1, 24344320, 14266560, 4090240, 756840, 100065, 9828, 714, 36, 1
Offset: 1
Triangle starts:
[ 1]
[ 1, 1]
[ 4, 3, 1]
[ 28, 19, 6, 1]
[ 280, 180, 55, 10, 1]
[ 3640, 2260, 675, 125, 15, 1]
[58240, 35280, 10360, 1925, 245, 21, 1]
- Richell O. Celeste, Roberto B. Corcino, and Ken Joffaniel M. Gonzales. Two Approaches to Normal Order Coefficients, Journal of Integer Sequences, Vol. 20 (2017), Article 17.3.5.
- T. Mansour, M. Schork, and M. Shattuck, On a new family of generalized Stirling and Bell numbers, Electron. J. Combin. 18 (2011) #P77 (33 pp.).
- Toufik Mansour, Matthias Schork and Mark Shattuck, On the Stirling numbers associated with the meromorphic Weyl algebra, Applied Mathematics Letters, Volume 25, Issue 11, November 2012, Pages 1767-1771.
-
A203412 := (n,k) -> (n!*3^n)/(k!*2^k)*add((-1)^j*binomial(k,j)*binomial(n-2*j/3-1, n), j=0..k): seq(seq(A203412(n,k),k=1..n),n=1..9); # Peter Luschny, Dec 21 2015
-
Table[(n! 3^n)/(k! 2^k) Sum[ (-1)^j Binomial[k, j] Binomial[n - 2 j/3 - 1, n], {j, 0, k}], {n, 9}, {k, n}] // Flatten (* Michael De Vlieger, Dec 23 2015 *)
-
# uses[bell_transform from A264428]
triplefactorial = lambda n: prod(3*k + 1 for k in (0..n-1))
def A203412_row(n):
trifact = [triplefactorial(k) for k in (0..n)]
return bell_transform(n, trifact)
[A203412_row(n) for n in (0..8)] # Peter Luschny, Dec 21 2015
A265606
Triangle read by rows: The Bell transform of the quartic factorial numbers (A007696).
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 5, 3, 1, 0, 45, 23, 6, 1, 0, 585, 275, 65, 10, 1, 0, 9945, 4435, 990, 145, 15, 1, 0, 208845, 89775, 19285, 2730, 280, 21, 1, 0, 5221125, 2183895, 456190, 62965, 6370, 490, 28, 1, 0, 151412625, 62002395, 12676265, 1715490, 171255, 13230, 798, 36, 1
Offset: 0
[1],
[0, 1],
[0, 1, 1],
[0, 5, 3, 1],
[0, 45, 23, 6, 1],
[0, 585, 275, 65, 10, 1],
[0, 9945, 4435, 990, 145, 15, 1],
[0, 208845, 89775, 19285, 2730, 280, 21, 1],
-
(* The function BellMatrix is defined in A264428. *)
rows = 10;
M = BellMatrix[Pochhammer[1/4, #] 4^# &, rows];
Table[M[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 23 2019 *)
-
# uses[bell_transform from A264428]
def A265606_row(n):
multifact_4_1 = lambda n: prod(4*k + 1 for k in (0..n-1))
mfact = [multifact_4_1(k) for k in (0..n)]
return bell_transform(n, mfact)
[A265606_row(n) for n in (0..7)]
Comments