cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A267141 Number of weeks in n! seconds, for n >= 10.

Original entry on oeis.org

6, 66, 792, 10296, 144144, 2162160, 34594560, 588107520, 10585935360, 201132771840, 4022655436800, 84475764172800, 1858466811801600, 42744736671436800, 1025873680114483200, 25646842002862080000, 666817892074414080000
Offset: 10

Views

Author

Richard H. Sweetman, Jan 10 2016

Keywords

Comments

10! seconds = 6 weeks (exactly)
11! seconds = 66 weeks (exactly)
12! seconds = 792 weeks (exactly), etc.
Demonstration of first term:
6 w * 7 d/w * 24 h/d * 60 m/h * 60 s/m = seconds in 6 weeks =
(2*3)*(1*7) *(3*8) * (6*10) * (3*5*4) =
1*2*3*4*5*6*7*8*(3^2)*10 = 10! seconds

Examples

			For n=12, a(12) = 6*(12)!/10! = 792; interpretation: 12! seconds = 792 weeks.
		

Crossrefs

Cf. A051431.

Programs

Formula

a(n) = 6*n!/10!.
a(n) = 6*A051431(n-10), for n>=10.

A373168 Triangle read by rows: the exponential almost-Riordan array ( exp(x/(1-x)) | 1/(1-x), x ).

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 13, 2, 2, 1, 73, 6, 6, 3, 1, 501, 24, 24, 12, 4, 1, 4051, 120, 120, 60, 20, 5, 1, 37633, 720, 720, 360, 120, 30, 6, 1, 394353, 5040, 5040, 2520, 840, 210, 42, 7, 1, 4596553, 40320, 40320, 20160, 6720, 1680, 336, 56, 8, 1, 58941091, 362880, 362880, 181440, 60480, 15120, 3024, 504, 72, 9, 1
Offset: 0

Views

Author

Stefano Spezia, May 26 2024

Keywords

Examples

			The triangle begins:
     1;
     1,   1;
     3,   1,   1;
    13,   2,   2,  1;
    73,   6,   6,  3,  1;
   501,  24,  24, 12,  4, 1;
  4051, 120, 120, 60, 20, 5, 1;
  ...
		

Crossrefs

Programs

  • Mathematica
    T[n_,0]:=n!SeriesCoefficient[Exp[x/(1-x)],{x,0,n}]; T[n_,k_]:=(n-1)!/(k-1)!SeriesCoefficient[1/(1-x)*x^(k-1),{x,0,n-1}]; Table[T[n,k],{n,0,10},{k,0,n}]//Flatten

Formula

T(n,0) = n! * [x^n] exp(x/(1-x)); T(n,k) = (n-1)!/(k-1)! * [x^(n-1)] 1/(1-x)*x^(k-1).
T(n,3) = A001710(n-1) for n > 2.
T(n,4) = A001715(n-1) for n > 3.
T(n,5) = A001720(n-1) for n > 4.
T(n,6) = A001725(n-1) for n > 5.
T(n,7) = A001730(n-1) for n > 6.
T(n,8) = A049388(n-8) for n > 7.
T(n,9) = A049389(n-9) for n > 8.
T(n,10) = A049398(n-10) for n > 9.
T(n,11) = A051431(n-11) for n > 10.
Previous Showing 11-12 of 12 results.