cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-21 of 21 results.

A230262 Numerators of Akiyama-Tanigawa algorithm applied to harmonic numbers, written by antidiagonals.

Original entry on oeis.org

1, 3, -1, 11, -2, 1, 25, -3, 1, 0, 137, -4, 3, 1, -1, 49, -5, 2, 1, -1, 0, 363, -6, 5, 2, -3, -1, 1, 761, -7, 3, 5, -1, -1, 1, 0, 7129, -8, 7, 5, 0, -4, 1, 1, -1, 7381, -9, 4, 7, 1, -1, -1, 1, -1, 0, 83711, -10, 9, 28, 49, -29, -5, 8, 1, -5, 5
Offset: 0

Views

Author

Paul Curtz, Nov 09 2013

Keywords

Comments

Leading column gives the Bernoulli numbers: A027641(n)/A027642(n). In A051714, A164555 must be written instead of A027641.

Examples

			Numerators of
1,    3/2, 11/6, 25/12,...
-1/2, -2/3, -3/4,  -4/5,...
1/6,   1/6, 3/20,  2/15,... =A026741(n+1)/A045896(n+1)
0,    1/30, 1/20,  2/35,... =A194531/A193220.
		

Crossrefs

Programs

  • Mathematica
    t[1, k_] := HarmonicNumber[k]; t[n_, k_] := t[n, k] = k*(t[n-1, k] - t[n-1, k+1]); Table[t[n-k+1, k] // Numerator, {n, 1, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Nov 15 2013 *)

Extensions

More terms from Jean-François Alcover, Nov 15 2013
Previous Showing 21-21 of 21 results.