cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-29 of 29 results.

A004470 Nim product 5 * n.

Original entry on oeis.org

0, 5, 10, 15, 2, 7, 8, 13, 3, 6, 9, 12, 1, 4, 11, 14, 80, 85, 90, 95, 82, 87, 88, 93, 83, 86, 89, 92, 81, 84, 91, 94, 160, 165, 170, 175, 162, 167, 168, 173, 163, 166, 169, 172, 161, 164, 171, 174, 240, 245, 250, 255, 242, 247, 248, 253, 243, 246, 249, 252, 241, 244
Offset: 0

Views

Author

Keywords

References

  • J. H. Conway, On Numbers and Games. Academic Press, NY, 1976, pp. 51-53.

Formula

a(n) = A051775(5,n).

Extensions

More terms from Erich Friedman

A004471 Nim product 6 * n.

Original entry on oeis.org

0, 6, 11, 13, 14, 8, 5, 3, 7, 1, 12, 10, 9, 15, 2, 4, 96, 102, 107, 109, 110, 104, 101, 99, 103, 97, 108, 106, 105, 111, 98, 100, 176, 182, 187, 189, 190, 184, 181, 179, 183, 177, 188, 186, 185, 191, 178, 180, 208, 214, 219, 221, 222, 216, 213, 211, 215, 209, 220, 218
Offset: 0

Views

Author

Keywords

References

  • J. H. Conway, On Numbers and Games. Academic Press, NY, 1976, pp. 51-53.

Formula

a(n) = A051775(6,n).

Extensions

More terms from Erich Friedman

A004472 Nim product 7 * n.

Original entry on oeis.org

0, 7, 9, 14, 10, 13, 3, 4, 15, 8, 6, 1, 5, 2, 12, 11, 112, 119, 121, 126, 122, 125, 115, 116, 127, 120, 118, 113, 117, 114, 124, 123, 144, 151, 153, 158, 154, 157, 147, 148, 159, 152, 150, 145, 149, 146, 156, 155, 224, 231, 233, 238, 234, 237, 227, 228, 239, 232
Offset: 0

Views

Author

Keywords

References

  • J. H. Conway, On Numbers and Games. Academic Press, NY, 1976, pp. 51-53.

Formula

a(n) = A051775(7,n).

Extensions

More terms from Erich Friedman

A004473 Nim product 8 * n.

Original entry on oeis.org

0, 8, 12, 4, 11, 3, 7, 15, 13, 5, 1, 9, 6, 14, 10, 2, 128, 136, 140, 132, 139, 131, 135, 143, 141, 133, 129, 137, 134, 142, 138, 130, 192, 200, 204, 196, 203, 195, 199, 207, 205, 197, 193, 201, 198, 206, 202, 194, 64, 72, 76, 68, 75, 67, 71, 79, 77, 69, 65, 73, 70, 78
Offset: 0

Views

Author

Keywords

References

  • J. H. Conway, On Numbers and Games. Academic Press, NY, 1976, pp. 51-53.

Formula

a(n) = A051775(8,n).

Extensions

More terms from Erich Friedman

A004475 Nim product 10 * n.

Original entry on oeis.org

0, 10, 15, 5, 3, 9, 12, 6, 1, 11, 14, 4, 2, 8, 13, 7, 160, 170, 175, 165, 163, 169, 172, 166, 161, 171, 174, 164, 162, 168, 173, 167, 240, 250, 255, 245, 243, 249, 252, 246, 241, 251, 254, 244, 242, 248, 253, 247, 80, 90, 95, 85, 83, 89, 92, 86, 81, 91, 94, 84, 82, 88
Offset: 0

Views

Author

Keywords

References

  • J. H. Conway, On Numbers and Games. Academic Press, NY, 1976, pp. 51-53.

Formula

a(n) = A051775(10,n).

Extensions

More terms from Erich Friedman

A004476 Nim product 11 * n.

Original entry on oeis.org

0, 11, 13, 6, 7, 12, 10, 1, 9, 2, 4, 15, 14, 5, 3, 8, 176, 187, 189, 182, 183, 188, 186, 177, 185, 178, 180, 191, 190, 181, 179, 184, 208, 219, 221, 214, 215, 220, 218, 209, 217, 210, 212, 223, 222, 213, 211, 216, 96, 107, 109, 102, 103, 108, 106, 97, 105, 98, 100
Offset: 0

Views

Author

Keywords

References

  • J. H. Conway, On Numbers and Games. Academic Press, NY, 1976, pp. 51-53.

Formula

a(n) = A051775(11,n).

Extensions

More terms from Erich Friedman

A334291 Array read by upward antidiagonals: T(n,k) (n >= 0, k > 0) = nim-division of n by k.

Original entry on oeis.org

0, 1, 0, 2, 3, 0, 3, 1, 2, 0, 4, 2, 3, 15, 0, 5, 12, 1, 5, 12, 0, 6, 15, 8, 10, 4, 9, 0, 7, 13, 10, 1, 8, 14, 11, 0, 8, 14, 11, 14, 13, 7, 13, 10, 0, 9, 4, 9, 4, 1, 15, 6, 15, 6, 0, 10, 7, 12, 11, 9, 6, 7, 5, 11, 8, 0, 11, 5, 14, 2, 5, 1, 12, 3, 13, 12, 7
Offset: 0

Views

Author

Rémy Sigrist, Jun 13 2020

Keywords

Comments

This is the array A334290 with a leading row of 0's.

Examples

			The array begins:
  n\k|   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
  ---+------------------------------------------------------------
    0|   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
    1|   1   3   2  15  12   9  11  10   6   8   7   5  14  13   4 --> A051917(n)
    2|   2   1   3   5   4  14  13  15  11  12   9  10   7   6   8
    3|   3   2   1  10   8   7   6   5  13   4  14  15   9  11  12
    4|   4  12   8   1  13  15   7   3  14  11  10   2   5   9   6
    5|   5  15  10  14   1   6  12   9   8   3  13   7  11   4   2
    6|   6  13  11   4   9   1  10  12   5   7   3   8   2  15  14
    7|   7  14   9  11   5   8   1   6   3  15   4  13  12   2  10
    8|   8   4  12   2   6   5   9   1   7  13  15   3  10  14  11
    9|   9   7  14  13  10  12   2  11   1   5   8   6   4   3  15
   10|  10   5  15   7   2  11   4  14  12   1   6   9  13   8   3
   11|  11   6  13   8  14   2  15   4  10   9   1  12   3   5   7
   12|  12   8   4   3  11  10  14   2   9   6   5   1  15   7  13
   13|  13  11   6  12   7   3   5   8  15  14   2   4   1  10   9
   14|  14   9   7   6  15   4   3  13   2  10  12  11   8   1   5
   15|  15  10   5   9   3  13   8   7   4   2  11  14   6  12   1
             |   |   |   |   |
             |   |   |   |   A004474(n)
             |   |   |   A004477(n)
             |   |   A004480(n)
             |   A006015(n)
             A004468(n)
		

Crossrefs

Formula

T(n, k) = A051775(n, A051917(k)).
T(n, 1) = n.
T(1, n) = A051917(k).
T(n, n) = 1.

A348291 Number of pairs of positive numbers k and m < n such that n is the Nim-product of k and m.

Original entry on oeis.org

0, 0, 1, 2, 1, 1, 2, 2, 5, 3, 5, 7, 10, 10, 12, 14, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 5, 5, 5, 5, 5, 3, 5, 3, 5, 5, 5, 5, 7, 7, 7, 7, 10, 10, 10, 10, 10, 10, 10, 10, 12, 12, 12, 12, 14, 14, 14, 14, 13, 13, 19, 21, 15
Offset: 0

Views

Author

Thomas Scheuerle, Oct 10 2021

Keywords

Comments

This sequence reaches for all a(2^(2^n) - 1) a local maximum, because for all natural numbers n, the set of nimbers less than 2^(2^n) form the Galois field GF(2^(2^n)).

Examples

			Nim-product for 0..3:
  0 1 2 3
  -------
0|0 0 0 0
1|0 1 2 3
2|0 2 3 1
3|0 3 1 2 factors of 3 are 1 and 3.
		

Crossrefs

Cf. A051775.

Programs

  • MATLAB
    function a = A348291( max_n )
        a(1) = 0;
        multable = zeros(max_n , max_n);
        for n = 1:max_n
            for m = 1:max_n
                multable(m,n) = nimprod(m,n);
            end
        end
        for n = 1:max_n
            [i,j] = find(multable(1:n,1:n) == n);
            a(n+1) = length(find(unique([i j]) < n));
        end
    end
    % highest power of 2 that divides a given number
    function h2 = hpo2( in )
        h2 =  bitand(in,bitxor(in,2^32-1)+1);
    end
    % base 2 logarithm of the highest power of 2 dividing a given number
    function lhp2 = lhpo2( in )
        lhp2 = 0;
        m = hpo2(in);
        q = 0;
        while m > 1
            m = m/2;
            lhp2 = lhp2+1;
        end
    end
    % nim-product of two numbers
    function prod = nimprod(x,y)
        if (x < 2 || y < 2)
            prod = x * y;
        else
            h = hpo2(x);
            if (x > h)
                prod = bitxor(nimprod(h, y),nimprod(bitxor(x,h), y));
            else
                if (hpo2(y) < y)
                    prod = nimprod(y, x);
                else
                    xp = lhpo2(x);
                    yp = lhpo2(y);
                    comp = bitand(xp,yp);
                    if (comp == 0)
                        prod =  x * y;
                    else
                        h = hpo2(comp);
                        prod = nimprod(nimprod(bitshift(x,-h),bitshift(y,-h)),bitshift(3,(h - 1)));
                    end
                end
            end
        end
    end

Formula

a(2^(2^n)..2^(2^n) + 2^(2^(n-1) - 1) - 1) = 1;
a(2^(2^n) - 1) = 2^(2^n) - 2;

A382121 Minimal polynomials of nimbers *(2^(2^n)-1), evaluated at 2.

Original entry on oeis.org

7, 25, 425, 101021, 7158330089, 27971386341277386797, 557019405516812760530014815489825522433, 200070165806576462487855236097886014378133571492030310620129377307348366314169
Offset: 1

Views

Author

Simon Tatham, Mar 16 2025

Keywords

Comments

Each of these polynomials from n=1 up to n=12 is primitive: if you make a finite field of order 2^(2^n) as GF(2)[x]/ then x generates the field's multiplicative group. A natural conjecture is that this is true for all n.

Examples

			For n=3, giving 2^n=8 and 2^(2^n)=256: let x be the nimber *255. Then the powers of x (under nim-multiplication) are *1, *255, *156, *61, *205, *200, *38, *71, *179. Under nim-addition, the subset of these powers *1 + *61 + *200 + *71 + *179 sum to *0. That is, 1+x^3+x^5+x^7+x^8 = 0. No sum of the powers up to and including x^7 is zero. So the polynomial 1+x^3+x^5+x^7+x^8 over GF(2) is the minimal polynomial of *255. Therefore the sequence entry for n=3 is the integer obtained by reinterpreting this polynomial as one over the integers and evaluating it at 2, i.e. 1+2^3+2^5+2^7+2^8 = 425.
		

Crossrefs

Cf. A051775 for definition of nim-multiplication.
Previous Showing 21-29 of 29 results.