cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-47 of 47 results.

A364136 a(n) is the number of distinct products of nonempty submultisets of the digits of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 2, 2, 3, 2, 3, 3, 3, 3, 3, 3, 2, 2, 3, 3, 2, 3, 3, 3, 3, 3, 2, 2, 3, 3, 3, 2, 3, 3, 3, 3, 2, 2, 3, 3, 3, 3, 2, 3, 3, 3, 2, 2, 3, 3, 3, 3, 3, 2, 3, 3, 2, 2, 3, 3, 3, 3, 3, 3, 2, 3, 2
Offset: 0

Views

Author

Ctibor O. Zizka, Jul 10 2023

Keywords

Comments

a(n) <= A000005(A051801(n)). - David A. Corneth, Mar 05 2024

Examples

			n = 10: products of digits are {0, 1, 0*1}, distinct products of digits are {0, 1}, thus a(10) = 2.
n = 11: products of digits are {1, 1*1}, distinct product of digits is {1}, thus a(11) = 1.
n = 23: products of digits are {2, 3, 2*3}, distinct products of digits are {2, 3, 6}, thus a(23) = 3.
		

Crossrefs

Programs

  • PARI
    a(n) = {if(n==0, return(1));
    	my(d = vecsort(digits(n)), l = List());
    	for(i = 1, #d,
    		forvec(x = vector(i, j, [1,#d]),
    			c = vecprod(vector(i, j, d[x[j]]));
    			listput(l, c)
    		,
    		2
    		)
    	);
    	#Set(l)
    } \\ David A. Corneth, Mar 05 2024

A086356 Fixed point if [nonzero-digit product]-function at initial-value=C[2n,n]=central binomial coefficient is iterated.

Original entry on oeis.org

2, 6, 2, 7, 2, 4, 4, 2, 2, 6, 6, 6, 8, 6, 5, 8, 8, 4, 8, 2, 9, 8, 6, 8, 6, 2, 8, 8, 2, 8, 6, 2, 6, 6, 8, 2, 6, 6, 6, 8, 9, 2, 2, 8, 2, 8, 2, 8, 6, 4, 2, 2, 8, 8, 2, 8, 6, 8, 2, 8, 6, 8, 9, 6, 6, 2, 6, 2, 2, 2, 8, 6, 8, 6, 8, 2, 8, 8, 8, 8, 8, 8, 6, 2, 6, 2, 8, 6, 8, 8, 8, 8, 8, 6, 8, 8, 6, 8, 2, 8, 2, 8, 6, 8, 8
Offset: 1

Views

Author

Labos Elemer, Jul 21 2003

Keywords

Examples

			n=10, C[20,10]=184756, iteration list={184756,7560,210,2},
a(100)=2.
		

Crossrefs

Programs

  • Mathematica
    prd[x_] := Apply[Times, DeleteCases[IntegerDigits[x], 0]] Table[FixedPoint[prd, Binomial[2*n, n]], {w, 1, 128}]

Formula

a(n)=A051802[A000984(n)]=fixed-point of A051801[C(2n, n)]

A086357 Fixed point if [nonzero-digit-product]-function at initial-value=A002110(n)=n-th primorial is iterated.

Original entry on oeis.org

2, 6, 3, 2, 6, 9, 1, 6, 8, 2, 8, 8, 8, 8, 6, 8, 6, 7, 8, 2, 8, 8, 8, 6, 2, 8, 1, 6, 8, 2, 2, 2, 8, 6, 8, 8, 8, 6, 4, 6, 2, 8, 2, 6, 6, 2, 2, 2, 6, 6, 8, 6, 2, 8, 8, 8, 5, 8, 6, 8, 2, 8, 8, 1, 2, 2, 8, 6, 8, 2, 2, 8, 2, 8, 8, 2, 2, 8, 8, 9, 6, 8, 4, 6, 8, 8, 8, 2, 8, 6, 8, 1, 6, 2, 2, 8, 1, 6, 6, 8, 6, 9, 2, 6, 2
Offset: 1

Views

Author

Labos Elemer, Jul 21 2003

Keywords

Examples

			n=7, 7th-primorial=510510, iteration list={510510,25,10,1},
a(100)=2.
		

Crossrefs

Programs

  • Mathematica
    prd[x_] := Apply[Times, DeleteCases[IntegerDigits[x], 0]] q[x_] := Apply[Times, Table[Prime[w], {w, 1, x}]] Table[FixedPoint[prd, q[w]], {w, 1, 128}]

Formula

a(n)=A051802[A002110(n)]=fixed-point of A051801[A002110(n)]

A091788 a(1) = 1, a(2) = 2 and a(n) = product of the nonzero digits of all previous terms.

Original entry on oeis.org

1, 2, 2, 4, 16, 96, 5184, 829440, 1911029760, 13002646487040, 10065920762063093760, 9319918463639717615448883200, 137422208150223932126848386360776224407552000
Offset: 1

Views

Author

Amarnath Murthy, Feb 18 2004

Keywords

Crossrefs

Programs

  • Maple
    p:=proc(n) local pr,nn,j: pr:=1: nn:=convert(n,base,10): for j from 1 to nops(nn) do if nn[j]>0 then pr:=pr*nn[j] else pr:=pr: fi: od: end: a:=proc(n) if n=1 then 1 elif n=2 then 2 elif n=3 then 2 else a(n-1)*p(a(n-1)) fi end: seq(a(n),n=1..14); # p(n) is the product of the nonzero digits of n # Emeric Deutsch, Apr 15 2005

Formula

a(n) = a(n-1)*product of nonzero digits of a(n-1) (n >= 4). - Emeric Deutsch, Apr 15 2005

Extensions

More terms from Emeric Deutsch, Apr 15 2005

A096291 Sum of digits(product of nonzero digits(n^n)).

Original entry on oeis.org

1, 4, 5, 6, 3, 9, 18, 27, 27, 1, 18, 27, 18, 9, 45, 27, 54, 54, 63, 15, 45, 72, 81, 72, 72, 81, 126, 72, 72, 27, 63, 81, 90, 81, 117, 99, 135, 135, 117, 54, 171, 144, 135, 144, 126, 171, 225, 126, 180, 72, 207, 162, 126, 162, 180, 198, 207, 234, 234, 135, 225, 207, 225, 270
Offset: 1

Views

Author

Jason Earls, Jun 24 2004

Keywords

Comments

Conjecture: a(n) = a(n+1) for infinitely many positive integers. Largest found is n=2577, i.e. sd(pnd(2577^2577)) = sd(pnd(2578^2578)) = 18315.

Crossrefs

A096343 Number of 1's in binary expansion(product of nonzero digits(n^n)).

Original entry on oeis.org

1, 1, 3, 4, 4, 4, 4, 6, 6, 1, 6, 5, 10, 5, 16, 14, 12, 17, 22, 4, 9, 21, 21, 22, 18, 25, 22, 21, 15, 4, 27, 28, 29, 23, 32, 34, 39, 38, 52, 13, 45, 56, 50, 53, 27, 50, 44, 48, 47, 18, 48, 62, 42, 47, 48, 44, 57, 67, 58, 31, 71, 66, 63, 57, 71, 67, 56, 74, 70, 42, 100, 89, 72, 60, 75
Offset: 0

Views

Author

Jason Earls, Jun 29 2004

Keywords

Comments

Conjecture: a(n) = a(n+1) for infinitely many positive integers. Largest found is n=1091, i.e. n1b(pnd(1091^1091)) = n1b(pnd(1092^1092)) = 1892.

Crossrefs

Programs

  • Mathematica
    Table[Count[IntegerDigits[Times@@DeleteCases[IntegerDigits[n^n],0],2],1],{n,80}] (* Harvey P. Dale, Mar 08 2017 *)

A108697 Numbers n such that a^r + b^r + c^r + ... is prime, where a*b*c* ... is the prime factorization of n and r is the product of the nonzero digits of n.

Original entry on oeis.org

10, 11, 12, 14, 22, 40, 54, 101, 122, 136, 250, 261, 300, 328, 500, 539, 704, 720, 850, 1001, 1016, 1020, 1110, 1112, 1140, 1210, 1402, 2121, 2211, 2220, 2254, 2400, 3081, 3114, 3311, 4011, 4100, 4180, 4510, 6231, 9093, 10110, 10111, 10112, 10203, 10216
Offset: 1

Views

Author

Jason Earls, Jun 19 2005

Keywords

Comments

Of the terms shown, 9093 generates the largest prime, 3^243+7^243+433^243, which has 641 digits. - David Wasserman, May 22 2008
a(74) = 15273. Of the first 74 terms, a(72) = 14464 generates the largest prime, 7*2^384+113^384, which has 789 digits. - David Wasserman, May 22 2008

Examples

			22 is in the sequence because 22 = 2*11 and 2^(2*2) + 11^(2*2) = 14657, a prime.
		

Crossrefs

A020449 is a subsequence.

Extensions

More terms from David Wasserman, May 22 2008
Previous Showing 41-47 of 47 results.