cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 119 results. Next

A334094 Primes p for which A329697(p) == 4.

Original entry on oeis.org

43, 47, 59, 67, 71, 79, 107, 109, 131, 149, 151, 157, 167, 179, 181, 227, 233, 239, 251, 281, 293, 307, 313, 337, 433, 443, 521, 593, 601, 613, 673, 809, 821, 823, 881, 929, 953, 971, 977, 1021, 1201, 1217, 1249, 1637, 1697, 1931, 2081, 2113, 2309, 2657, 2689, 2741, 2789, 2819, 3203, 3209, 3299, 3457, 3469, 3593, 3617, 3847, 3881, 4001
Offset: 1

Views

Author

Antti Karttunen, Apr 14 2020

Keywords

Comments

Primes p of the form of the form A334103(n) + 1, for some n >= 1.

Crossrefs

Programs

A334106 Numbers n for which A329697(n) == 6.

Original entry on oeis.org

283, 301, 329, 343, 347, 361, 379, 381, 383, 387, 399, 413, 417, 419, 423, 431, 437, 441, 463, 469, 473, 483, 487, 489, 491, 497, 509, 513, 517, 519, 523, 529, 531, 539, 547, 551, 553, 557, 559, 566, 567, 571, 573, 589, 591, 597, 599, 602, 603, 609, 611, 621, 627, 631, 633, 635, 637, 639, 643, 645, 649, 651, 653, 658, 665
Offset: 1

Views

Author

Antti Karttunen, Apr 14 2020

Keywords

Crossrefs

Row 6 of A334100.
Cf. A334096 (primes present).

Programs

A335904 Fully additive with a(2) = 0, and a(p) = 1+a(p-1)+a(p+1), for odd primes p.

Original entry on oeis.org

0, 0, 1, 0, 2, 1, 2, 0, 2, 2, 4, 1, 4, 2, 3, 0, 3, 2, 5, 2, 3, 4, 6, 1, 4, 4, 3, 2, 6, 3, 4, 0, 5, 3, 4, 2, 8, 5, 5, 2, 6, 3, 8, 4, 4, 6, 8, 1, 4, 4, 4, 4, 8, 3, 6, 2, 6, 6, 10, 3, 8, 4, 4, 0, 6, 5, 9, 3, 7, 4, 7, 2, 11, 8, 5, 5, 6, 5, 8, 2, 4, 6, 10, 3, 5, 8, 7, 4, 9, 4, 6, 6, 5, 8, 7, 1, 6, 4, 6, 4, 9, 4, 9, 4, 5
Offset: 1

Views

Author

Antti Karttunen, Jun 29 2020

Keywords

Crossrefs

Programs

  • PARI
    A335904(n) = { my(f=factor(n)); sum(k=1,#f~,if(2==f[k,1],0,f[k,2]*(1+A335904(f[k,1]-1)+A335904(f[k,1]+1)))); };

Formula

Totally additive with a(2) = 0, and for odd primes p, a(p) = 1 + a(p-1) + a(p+1).
a(n) = A336118(n) + A087436(n).
For all n >= 1, a(A335915(n)) = A336118(n).
For all n >= 1, a(n) >= A335884(n) >= A335881(n) >= A335875(n) >= A335885(n).
For all n >= 0, a(3^n) = n.

A323077 Number of iterations of map x -> (x - (largest divisor d < x)) needed to reach 1 or a prime, when starting at x = n.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 2, 2, 1, 0, 2, 0, 1, 2, 3, 0, 3, 0, 2, 2, 1, 0, 3, 3, 1, 4, 2, 0, 3, 0, 4, 2, 1, 3, 4, 0, 1, 2, 3, 0, 3, 0, 2, 4, 1, 0, 4, 4, 4, 2, 2, 0, 5, 3, 3, 2, 1, 0, 4, 0, 1, 4, 5, 3, 3, 0, 2, 2, 4, 0, 5, 0, 1, 5, 2, 4, 3, 0, 4, 6, 1, 0, 4, 3, 1, 2, 3, 0, 5, 4, 2, 2, 1, 3, 5, 0, 5, 4, 5, 0, 3, 0, 3, 5
Offset: 1

Views

Author

Antti Karttunen, Jan 04 2019

Keywords

Comments

When iteration is started from n, the first noncomposite reached is A006530(n), from which follows the new formula a(n) = A064097(A052126(n)) = A064097(n/A006530(n)), as A064097 is completely additive sequence. - Antti Karttunen, May 15 2020

Crossrefs

Cf. A334198 (positions of the records, also the first occurrence of each n).
Differs from A334201 for the first time at n=169, where a(169) = 5, while A334201(169) = 6.

Programs

  • Mathematica
    Nest[Append[#1, If[PrimeOmega[#2] <= 1, 0, 1 + #1[[Max@ Differences@ Divisors[#2] ]] ]] & @@ {#, Length@ # + 1} &, {}, 105] (* Michael De Vlieger, May 26 2020 *)
  • PARI
    A060681(n) = (n-if(1==n,n,n/vecmin(factor(n)[,1])));
    A323077(n) = if(1>=bigomega(n),0,1+A323077(A060681(n)));

Formula

If A001222(n) <= 1 [when n is 1 or a prime], a(n) = 0, otherwise a(n) = 1 + a(A060681(n)).
a(n) <= A064097(n).
a(n) = A064097(n) - A334202(n) = A064097(A052126(n)). - Antti Karttunen, May 13 2020
a(A334198(n)) = n for all n >= 0. - Antti Karttunen, May 19 2020

A325135 Size of the integer partition with Heinz number n after its inner lining, or, equivalently, its largest hook, is removed.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 2, 0, 2, 0, 0, 1, 0, 0, 1, 0, 2, 1, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 0, 3, 2, 1, 0, 0, 2, 2, 0, 1, 0, 0, 1, 0, 0, 2, 0, 2, 1, 0, 0, 1, 2, 0, 1, 0, 0, 3, 0, 3, 1, 0, 0, 3, 0, 0, 1, 2, 0, 1, 0, 0, 2, 3, 0, 1, 0, 2, 0, 0, 3, 2, 2, 0, 1, 0, 0, 3
Offset: 1

Views

Author

Gus Wiseman, Apr 02 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The partition with Heinz number 715 is (6,5,3), with diagram
  o o o o o o
  o o o o o
  o o o
which has inner lining
          o o
      o o o
  o o o
or largest hook
  o o o o o o
  o
  o
both of which have complement
  o o o o
  o o
which has size 6, so a(715) = 6.
		

Crossrefs

Programs

  • Mathematica
    Table[If[n==1,0,Total[Most[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]-1]],{n,100}]
  • PARI
    A056239(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i,2] * primepi(f[i,1]))); }
    A061395(n) = if(1==n, 0, primepi(vecmax(factor(n)[, 1])));
    A325135(n) = if(1==n,0,(1+A056239(n)-bigomega(n)-A061395(n))); \\ Antti Karttunen, Apr 14 2019

Formula

a(n) = A056239(A325133(n)).
For n > 1:
a(n) = A056239(n) - A001222(n) - A061395(n) + 1.
a(n) = A056239(n) - A252464(n).
a(n) = A056239(n) - A325134(n) + 1.

Extensions

More terms from Antti Karttunen, Apr 14 2019

A325224 Sum of prime indices of n minus the lesser of the number of prime factors of n counted with multiplicity and the maximum prime index of n.

Original entry on oeis.org

0, 0, 1, 1, 2, 1, 3, 2, 2, 2, 4, 2, 5, 3, 3, 3, 6, 3, 7, 2, 4, 4, 8, 3, 4, 5, 4, 3, 9, 3, 10, 4, 5, 6, 5, 4, 11, 7, 6, 3, 12, 4, 13, 4, 4, 8, 14, 4, 6, 4, 7, 5, 15, 5, 6, 3, 8, 9, 16, 4, 17, 10, 5, 5, 7, 5, 18, 6, 9, 5, 19, 5, 20, 11, 5, 7, 7, 6, 21, 4, 6, 12
Offset: 1

Views

Author

Gus Wiseman, Apr 12 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.
Also the number of squares in the Young diagram of the integer partition with Heinz number n after the first row or the first column, whichever is smaller, is removed. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			88 has 4 prime indices {1,1,1,5} with sum 8 and maximum 5, so a(88) = 8 - min(4,5) = 4.
		

Crossrefs

The number of times k appears in the sequence is A325232(k).

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[If[n==1,0,Total[primeMS[n]]-Min[Length[primeMS[n]],Max[primeMS[n]]]],{n,100}]

Formula

a(n) = A056239(n) - min(A001222(n), A061395(n)) = A056239(n) - A325225(n).

A334095 Primes p for which A329697(p) == 5.

Original entry on oeis.org

127, 139, 163, 173, 191, 197, 199, 211, 223, 229, 263, 269, 271, 277, 311, 317, 331, 349, 359, 367, 373, 397, 421, 439, 457, 461, 467, 479, 499, 503, 541, 563, 569, 587, 607, 617, 619, 647, 661, 677, 701, 733, 739, 751, 761, 857, 877, 887, 919, 937, 997, 1009, 1031, 1049, 1061, 1069, 1123, 1187, 1193, 1213, 1229, 1231
Offset: 1

Views

Author

Antti Karttunen, Apr 14 2020

Keywords

Comments

Primes p of the form of the form A334104(n) + 1, for some n >= 1.

Crossrefs

Programs

A334096 Primes p for which A329697(p) == 6.

Original entry on oeis.org

283, 347, 379, 383, 419, 431, 463, 487, 491, 509, 523, 547, 557, 571, 599, 631, 643, 653, 683, 691, 709, 719, 727, 743, 757, 787, 797, 811, 829, 853, 859, 907, 911, 941, 991, 1013, 1033, 1051, 1087, 1091, 1093, 1109, 1117, 1129, 1151, 1163, 1171, 1181, 1277, 1289, 1381, 1399, 1451, 1453, 1493, 1511, 1523, 1559, 1571, 1583, 1607
Offset: 1

Views

Author

Antti Karttunen, Apr 14 2020

Keywords

Comments

Primes p of the form of the form A334105(n) + 1, for some n >= 1.

Crossrefs

Programs

A334105 Numbers m for which A329697(m) = 5.

Original entry on oeis.org

127, 129, 133, 139, 141, 147, 161, 163, 171, 173, 177, 189, 191, 197, 199, 201, 203, 207, 209, 211, 213, 215, 217, 223, 229, 231, 235, 237, 243, 245, 247, 253, 254, 258, 259, 261, 263, 266, 269, 271, 273, 277, 278, 279, 282, 285, 294, 295, 297, 299, 311, 315, 317, 319, 321, 322, 326, 327, 331, 333, 335, 341, 342, 345, 346, 349, 351
Offset: 1

Views

Author

Antti Karttunen, Apr 14 2020

Keywords

Examples

			127 = 63*2 + 1 is a term, as 127 is a prime and 63 is in A334104 as A329697(63) = 4.
2^32 -1 = 4294967295 = 3*5*17*257*65537 is a term as it is a product of five Fermat primes, thus in five steps all odd primes can be eliminated with p -> (p-1) map.
Likewise for 1442840405 = 5 * 17 * 257^3. (The first term with binary weight = 24).
		

Crossrefs

Row 5 of A334100.
Cf. A334095 (primes present).

Programs

  • Mathematica
    Position[Array[Length@ NestWhileList[# - #/FactorInteger[#][[-1, 1]] &, #, # != 2^IntegerExponent[#, 2] &] - 1 &, 360], 5][[All, 1]] (* Michael De Vlieger, Apr 30 2020 *)
  • PARI
    A329697(n) = if(!bitand(n,n-1),0,1+A329697(n-(n/vecmax(factor(n)[, 1]))));
    isA334105(n) = (5==A329697(n));

A087039 If n is prime then 1 else 2nd largest prime factor of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 3, 2, 1, 3, 1, 2, 3, 2, 1, 2, 5, 2, 3, 2, 1, 3, 1, 2, 3, 2, 5, 3, 1, 2, 3, 2, 1, 3, 1, 2, 3, 2, 1, 2, 7, 5, 3, 2, 1, 3, 5, 2, 3, 2, 1, 3, 1, 2, 3, 2, 5, 3, 1, 2, 3, 5, 1, 3, 1, 2, 5, 2, 7, 3, 1, 2, 3, 2, 1, 3, 5, 2, 3, 2, 1, 3, 7, 2, 3, 2, 5, 2, 1, 7, 3, 5, 1, 3
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 01 2003

Keywords

Crossrefs

Programs

  • Haskell
    a087039 n | null ps   = 1
              | otherwise = head ps
              where ps = tail $ reverse $ a027746_row n
    -- Reinhard Zumkeller, Oct 03 2012
    
  • Maple
    A087039 := proc(n)
        local pset ,t;
        if isprime(n) or n= 1 then
            1;
        else
            pset := [] ;
            for p in ifactors(n)[2] do
                pset := [op(pset),seq(op(1,p),t=1..op(2,p))] ;
            end do:
            op(-2,sort(pset)) ;
        end if;
    end proc: # R. J. Mathar, Sep 14 2012
  • Mathematica
    gpf[n_] := FactorInteger[n][[-1, 1]];
    a[n_] := If[PrimeQ[n], 1, gpf[n/gpf[n]]];
    Array[a, 105] (* Jean-François Alcover, Dec 16 2021 *)
  • Python
    from sympy import factorint
    def a(n):
        pf = factorint(n, multiple=True)
        return 1 if len(pf) < 2 else pf[-2]
    print([a(n) for n in range(1, 103)]) # Michael S. Branicky, Dec 16 2021

Formula

a(n) = A006530(A052126(n)) = A006530(n/A006530(n));
A087040(n) = a(A002808(n)).
Previous Showing 51-60 of 119 results. Next