cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-33 of 33 results.

A171568 Riordan array (f(x), x*f(x)) where f(x) is the g.f. of A064613.

Original entry on oeis.org

1, 3, 1, 10, 6, 1, 37, 29, 9, 1, 150, 134, 57, 12, 1, 654, 622, 318, 94, 15, 1, 3012, 2948, 1686, 616, 140, 18, 1, 14445, 14317, 8781, 3693, 1055, 195, 21, 1, 71398, 71142, 45625, 21132, 7075, 1662, 259, 24, 1, 361114, 360602, 238170, 118042, 44303, 12345, 2464, 332, 27, 1
Offset: 0

Views

Author

Philippe Deléham, Dec 11 2009

Keywords

Comments

Equal to A171515*B = B*A104259, B = A007318.

Examples

			Triangle T(n,k) begins
[0]     1;
[1]     3,     1;
[2]    10,     6,     1;
[3]    37,    29,     9,     1;
[4]   150,   134,    57,    12,    1;
[5]   654,   622,   318,    94,   15,    1;
[6]  3012,  2948,  1686,   616,  140,   18,   1;
[7] 14445, 14317,  8781,  3693, 1055,  195,  21,  1;
[8] 71398, 71142, 45625, 21132, 7075, 1662, 259, 24, 1;
.
Production array begins
  3, 1
  1, 3, 1
  1, 1, 3, 1
  1, 1, 1, 3, 1
  1, 1, 1, 1, 3, 1
  1, 1, 1, 1, 1, 3, 1
- _Philippe Deléham_, Mar 05 2013
		

Crossrefs

Sum_{k=0..n} T(n,k)*x^k = A033543(n), A064613(n), A005572(n), A005573(n) for x = -1, 0, 1, 2 respectively.

Programs

  • Maple
    T := proc(n,k) option remember;
    if n < 0 or k < 0 then 0 elif n = k then 1 else
    T(n-1, k-1) + 3*T(n-1,k) + add(T(n-1, k+1+i), i=0..n) fi end:
    for n from 0 to 8 do seq(T(n,k), k = 0..n) od; # Peter Luschny, Oct 16 2022
  • Mathematica
    T[n_, k_] := T[n, k] = If[n < 0 || k < 0, 0, If[n == k, 1, T[n-1, k-1] + 3*T[n-1, k] + Sum[T[n-1, k+1+i], {i, 0, n}]]];
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 23 2024, after Peter Luschny *)

Formula

T(n, 0) - T(n, 1) = 2^n.
T(n, k) = T(n-1, k-1) + 3*T(n-1, k) + Sum_{i=0..n} T(n-1, k+1+i). - Philippe Deléham, Feb 23 2012

Extensions

Corrected and extended by Peter Luschny, Oct 16 2022

A052178 Number of walks of length n on the simple cubic lattice terminating at height 2 above the (x,y)-plane.

Original entry on oeis.org

1, 12, 99, 700, 4569, 28476, 172508, 1026288, 6033690, 35195512, 204232809, 1181052756, 6814746393, 39267916380, 226097749224, 1301403695520, 7490649175326, 43123589230824, 248351880642630, 1430956006648056, 8249467230853002, 47587180659332248
Offset: 2

Views

Author

N. J. A. Sloane, Jan 26 2000

Keywords

Crossrefs

Column 2 of A052179.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(min(n, k)<0, 0,
         `if`(max(n, k)=0, 1, b(n-1, k-1)+4*b(n-1, k)+b(n-1, k+1)))
        end:
    a:= n-> b(n, 2):
    seq(a(n), n=2..25);  # Alois P. Heinz, Oct 28 2021
  • Mathematica
    b[n_, k_] := b[n, k] = If[Min[n, k] < 0, 0, If[Max[n, k] == 0, 1, b[n - 1, k - 1] + 4*b[n - 1, k] + b[n - 1, k + 1]]];
    a[n_] :=  b[n, 2];
    Table[a[n], {n, 2, 25}] (* Jean-François Alcover, Jan 07 2025, after Alois P. Heinz *)

Extensions

More terms and title improved by Sean A. Irvine, Oct 28 2021

A171515 Riordan array (f(x), x*f(x)) where f(x) is the g.f. of A033543.

Original entry on oeis.org

1, 2, 1, 5, 4, 1, 16, 14, 6, 1, 62, 52, 27, 8, 1, 270, 213, 116, 44, 10, 1, 1257, 948, 513, 216, 65, 12, 1, 6096, 4470, 2376, 1038, 360, 90, 14, 1, 30398, 21904, 11468, 5056, 1880, 556, 119, 16, 1
Offset: 0

Views

Author

Philippe Deléham, Dec 10 2009

Keywords

Comments

Equal to B^2*A039598*B^(-2), B = A007318.

Examples

			Triangle begins : 1 ; 2,1 : 5,4,1 ; 16,14,6,1 ; 62,52,27,8,1 ; ...
		

Crossrefs

Formula

Sum_{k, 0<=k<=n} T(n,k)*x^k = A033543(n), A064613(n), A005572(n), A005573(n) for x = 0, 1, 2, 3 respectively.
T(n,k) = T(n-1,k-1) + 2*T(n-1,k) + sum_{i, i>=0} T(n-1,k+1+i)*2^i. - Philippe Deléham, Feb 23 2012
Previous Showing 31-33 of 33 results.