cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-23 of 23 results.

A066917 Determinant of n X n matrix whose rows are cyclic permutations of 4..Composite(n).

Original entry on oeis.org

4, -20, -216, 2025, 24457, -661745, -21930489, 485222400, 12094491106, -594800640896, -32850150466188, 1138086428486400, 42791463719713975, -3042278237035388153, -123027745203325414816, 5708406518410582200000, 275201338468042020170179
Offset: 1

Views

Author

Robert G. Wilson v, Jan 24 2002

Keywords

Examples

			a(3) = -216 because this is the determinant of [ (4,6,8), (6,8,4), (8,4,6) ]
		

Crossrefs

Programs

  • Mathematica
    Composite[ n_Integer ] := FixedPoint[ n + PrimePi[ # ] + 1 &, n + PrimePi[ n ] + 1 ]; f[ n_ ] := Module[ {a = Table[ Composite[ i ], {i, 1, n} ], m = {}, k = 0}, While[ k < n, m = Append[ m, RotateLeft[ a, k ] ]; k++ ]; Det[ m ] ]; Table[ f[ n ], {n, 1, 16} ]

A071210 Triangular array T(n,k) read by rows, giving number of labeled free trees such that the root is smaller than all its children, with respect to the number n of vertices and to the degree k of the root.

Original entry on oeis.org

1, 3, 1, 18, 8, 1, 160, 80, 15, 1, 1875, 1000, 225, 24, 1, 27216, 15120, 3780, 504, 35, 1, 470596, 268912, 72030, 10976, 980, 48, 1, 9437184, 5505024, 1548288, 258048, 26880, 1728, 63, 1, 215233605, 127545840, 37200870, 6613488, 765450, 58320
Offset: 1

Views

Author

Cedric Chauve (chauve(AT)lacim.uqam.ca), May 16 2002

Keywords

Crossrefs

Cf. A000312, A052182 (first column).

Programs

  • Maple
    (n,k) -> binomial(n+1,k+1)*k*n^(n-k-1)
  • PARI
    tabl(nn) = for (n=1, nn, for (k=1, n, print1(binomial(n+1, k+1)*k*n^(n-k-1), ", ");); print) \\ Michel Marcus, Jun 27 2013

Formula

T(n,k) = binomial(n+1, k+1)*k*n^(n-k-1).

A118702 a(n) = determinant of n X n circulant matrix whose first row is the first n Lucas numbers A000032, from L(0) to L(n-1).

Original entry on oeis.org

2, 3, 18, 0, 8347, -861952, 391524998, -359089453125, 893329160995712, -5499366235206395112, 87687141416511254851323, -3590079701896396800000000000, 381284797406693371431803926245802, -105147887074796935457211770823970013737
Offset: 1

Views

Author

Jonathan Vos Post, May 20 2006

Keywords

Examples

			a(4) = 0 because of the singular matrix:
[2, 1, 3, 4]
[4, 2, 1, 3]
[3, 4, 2, 1]
[1, 3, 4, 2].
		

Crossrefs

A000032 Lucas numbers (beginning at 2): L(n) = L(n-1) + L(n-2). A048954 Wendt determinant of n-th circulant matrix C(n). A052182 Circulant of natural numbers. A066933 Circulant of prime numbers. A086459 Circulant of powers of 2.

Programs

  • Mathematica
    circ[w_] := NestList[RotateRight, w, Length[w] - 1]; Table[ Det[ circ[ LucasL@ Range[0, n - 1]]], {n, 10}] (* Giovanni Resta, Jun 16 2016 *)

Extensions

Corrected and extended by Giovanni Resta, Jun 16 2016
Previous Showing 21-23 of 23 results.