cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-44 of 44 results.

A279771 Numbers n such that the sum of digits of 11n equals 11.

Original entry on oeis.org

19, 28, 37, 46, 55, 64, 73, 82, 190, 280, 370, 460, 550, 640, 730, 820, 919, 928, 937, 946, 955, 964, 973, 982, 991, 1819, 1828, 1837, 1846, 1855, 1864, 1873, 1882, 1891, 1900, 2728, 2737, 2746, 2755, 2764, 2773, 2782, 2791, 2800, 3637, 3646, 3655, 3664
Offset: 1

Views

Author

M. F. Hasler, Dec 23 2016

Keywords

Comments

Inspired by A088404 = A069537/2 through A088410 = A069543/8.

Crossrefs

Cf. A007953 (digital sum), Digital sum of m*n equals m: A088404 = A069537/2, A088405 = A052217/3, A088406 = A063997/4, A088407 = A069540/5, A088408 = A062768/6, A088409 = A063416/7, A088410 = A069543/8.
Cf. A005349 (Niven or Harshad numbers), A245062 (arranged in rows by digit sums).
Numbers with given digital sum: A011557 (1), A052216 (2), A052217 (3), A052218 (4), A052219 (5), A052220 (6), A052221 (7), A052222 (8), A052223 (9), A052224 (10), A166311 (11), A235151 (12), A143164 (13), A235225 (14), A235226 (15), A235227 (16), A166370 (17), A235228 (18), A166459 (19), A235229 (20).
Cf. A279772 (sumdigits(2n) = 4), A279773 (sumdigits(3n) = 6), A279774 (sumdigits(4n) = 8), A279775 (sumdigits(5n) = 10), A279776 (sumdigits(6n) = 12), A279770 (sumdigits(7n) = 14), A279768 (sumdigits(8n) = 16), A279769 (sumdigits(9n) = 18), A279777 (sumdigits(9n) = 27).

Programs

  • Mathematica
    Select[Range@ 3664, Total@IntegerDigits[11 #] == 11 &] (* Michael De Vlieger, Dec 23 2016 *)
  • PARI
    is(n)=sumdigits(11*n)==11

A333814 Multiples of 12 whose sum of digits is 12.

Original entry on oeis.org

48, 84, 156, 192, 228, 264, 336, 372, 408, 444, 480, 516, 552, 624, 660, 732, 804, 840, 912, 1056, 1092, 1128, 1164, 1236, 1272, 1308, 1344, 1380, 1416, 1452, 1524, 1560, 1632, 1704, 1740, 1812, 1920, 2028, 2064, 2136, 2172, 2208, 2244, 2280, 2316, 2352, 2424
Offset: 1

Views

Author

Bernard Schott, Apr 06 2020

Keywords

Comments

If m is a term, 10*m is also a term.

Examples

			732 = 12 * 61 and 7 + 3 + 2 = 12, hence 732 is a term.
		

Crossrefs

Intersection of A235151 (sum of digits = 12) and A008594 (multiples of 12).
Multiples of k whose sum of digits = k: A011557 (k=1), A069537 (k=2), A052217 (k=3), A063997 (k=4), A069540 (k=5), A062768 (k=6), A063416 (k=7), A069543 (k=8), A052223 (k=9), A333834 (k=10), A283742 (k=11), this sequence (k=12), A283737 (k=13).
Cf. A008594 (multiples of 12), A235151 (sum of digits = 12).
Cf. A057147 (a(n) = n times sum of digits of n).

Programs

  • Mathematica
    Select[12 * Range[200], Plus @@ IntegerDigits[#] == 12 &] (* Amiram Eldar, Apr 06 2020 *)
  • PARI
    is(n)=sumdigits(n)==12 && n%4==0 \\ Charles R Greathouse IV, Apr 07 2020

Formula

a(n) ~ A235151(n). - Charles R Greathouse IV, Apr 07 2020

A333834 Multiples of 10 whose sum of digits is 10.

Original entry on oeis.org

190, 280, 370, 460, 550, 640, 730, 820, 910, 1090, 1180, 1270, 1360, 1450, 1540, 1630, 1720, 1810, 1900, 2080, 2170, 2260, 2350, 2440, 2530, 2620, 2710, 2800, 3070, 3160, 3250, 3340, 3430, 3520, 3610, 3700, 4060, 4150, 4240, 4330, 4420, 4510
Offset: 1

Views

Author

Bernard Schott, Apr 07 2020

Keywords

Comments

If m is a term, 10*m is also a term.
Intersection of A052224 (sum of digits = 10) and A008592 (multiples of 10).

Examples

			2440 = 10 * 244 and 2 + 4 + 4 + 0 = 10, hence 2440 is a term.
		

Crossrefs

Multiples of k whose sum of digits = k: A011557 (k=1), A069537 (k=2), A052217 (k=3), A063997 (k=4), A069540 (k=5), A062768 (k=6), A063416 (k=7), A069543 (k=8), A052223 (k=9), this sequence (k=10), A283742 (k=11), A333814 (k=12), A283737 (k=13).
Subsequence of A218292.
Cf. A008592 (multiples of 10), A052224 (sum of digits = 10).
Cf. A057147 (a(n) = n times sum of digits of n)

Programs

  • Mathematica
    Select[10 * Range[500], Plus @@ IntegerDigits[#] == 10 &] (* Amiram Eldar, Apr 07 2020 *)

Formula

a(n) = 10*A052224(n). - Charles R Greathouse IV, Apr 07 2020

A383971 Triprimes with sum of digits 3.

Original entry on oeis.org

12, 30, 102, 1002, 2001, 10002, 10011, 11001, 20001, 100101, 101001, 110001, 200001, 1000002, 10001001, 10010001, 11000001, 20000001, 100000101, 1000000011, 1000001001, 1000010001, 1000100001, 1001000001, 1010000001, 10000000002, 10000000011, 10000010001, 11000000001, 100000000101, 100000001001
Offset: 1

Views

Author

Robert Israel, May 16 2025

Keywords

Comments

Numbers that are the product of 3 primes, counted with multiplicity, and whose sum of decimal digits is 3.
Since all terms are divisible by 3, the only term ending with 0 is 30. All others are of the form 10^i + 10^j + 1 with 0 <= j <= i.
For each d from 2 to at least 71, there is at least one term with d digits.
Includes 10^k + 2 for k in A076850.
All terms except 12 are squarefree.
All even terms are Zumkeller numbers (A083207). - Ivan N. Ianakiev, May 18 2025

Examples

			a(4) = 1002 is a term because 1+0+0+2 = 3 and 1002 = 2 * 3 * 167 is the product of 3 primes, counted with multiplicity.
		

Crossrefs

Intersection of any two of A014612, A050689, and A052217.

Programs

  • Maple
    istriprime:= proc(n) local F;
      F:= ifactors(n,easy)[2];
      if not hastype(F,symbol) then return convert(F[..,2],`+`)=3 fi;
      F:= remove(hastype,F,symbol);
      if nops(F) > 1 or (nops(F) = 1 and F[1,2] > 1) then return false fi;
      numtheory:-bigomega(n) = 3
    end proc:
    R:= 12, 30:
    for d from 3 to 30 do
      V:= select(istriprime, [seq(seq(10^(d-1) + 10^j + 1,j=0..d-1)]);
      R:= R,op(V);
    od:
    R;
  • Mathematica
    s={30};imax=11;Do[n=10^i+10^j+1;If[PrimeOmega[n]==3,AppendTo[s,n]],{i,0,imax},{j,0,i}];Sort[s] (* James C. McMahon, Jun 01 2025 *)
Previous Showing 41-44 of 44 results.