cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A228849 Number of distinct 12th powers modulo n.

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 2, 2, 4, 6, 4, 2, 4, 4, 2, 5, 4, 4, 4, 4, 12, 12, 4, 6, 4, 4, 4, 8, 8, 6, 3, 12, 10, 4, 4, 4, 8, 4, 4, 11, 8, 8, 12, 4, 24, 24, 4, 8, 12, 10, 4, 14, 8, 12, 4, 8, 16, 30, 8, 6, 12, 4, 5, 4, 24, 12, 10, 24, 8, 36, 4, 7, 8, 12, 8, 12, 8, 14, 4, 10
Offset: 1

Views

Author

Arkadiusz Wesolowski, Sep 05 2013

Keywords

Crossrefs

Cf. A000224 (squares), A046530 (cubic residues), A052273 (4th powers), A052274 (5th powers), A052275 (6th powers), A085310 (7th powers), A085311 (8th powers), A085312 (9th powers), A085313 (10th powers), A085314 (11th powers).

Programs

  • Magma
    [#Set([k^12 mod n : k in [1..n]]) : n in [1..81]];
    
  • Maple
    A228849 := proc(n)
        {seq(i^12 mod n, i=0..n-1)} ;
        nops(%) ;
    end proc: # R. J. Mathar, Sep 21 2017
  • Mathematica
    a[n_] := Table[PowerMod[i, 12, n], {i, 0, n - 1}] // Union // Length;
    Array[a, 100] (* Jean-François Alcover, Mar 24 2020 *)
  • PARI
    a(n)=my(f=factor(n)); prod(i=1, #f[, 1], my(k=f[i, 1]^f[i, 2]); #vecsort(vector(k, i, i^12%k), , 8)) \\ Charles R Greathouse IV, Sep 05 2013

A257303 Number of 5th power nonresidues modulo n.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 3, 2, 0, 8, 3, 0, 0, 0, 7, 0, 4, 0, 5, 0, 16, 0, 9, 20, 0, 8, 7, 0, 0, 24, 15, 24, 0, 0, 15, 0, 0, 0, 15, 32, 0, 0, 35, 10, 0, 0, 21, 6, 40, 0, 13, 0, 16, 40, 21, 0, 0, 0, 15, 48, 48, 14, 30, 0, 48, 0, 17, 0, 0, 56, 37, 0, 0, 60, 19, 56, 0, 0, 35, 26, 64, 0, 21, 0, 0, 0, 73, 0
Offset: 1

Views

Author

Stanislav Sykora, Apr 19 2015

Keywords

Comments

a(n) is the number of values r, 0<=r=0, (m^p)%n != r.

Crossrefs

Cf. A095972 (p=2), A257301 (p=3), A257302 (p=4).

Programs

  • Mathematica
    Table[Length[Complement[Range[n - 1], Union[Mod[Range[n]^5, n]]]], {n, 100}] (* Vincenzo Librandi, Apr 20 2015 *)
  • PARI
    nrespowp(n,p) = {my(v=vector(n),d=0);
      for(r=0,n-1,v[1+(r^p)%n]+=1);
      for(k=1,n,if(v[k]==0,d++));
      return(d);}
    a(n) = nrespowp(n,5)

Formula

a(n) = n-A052274(n).
Satisfies a(n) <= n-3 (residues 0, 1, and n-1 are always present).

A337868 Number of distinct residues of x^r (mod n), x=0..n-1, r=2, ..., n.

Original entry on oeis.org

0, 2, 3, 3, 5, 6, 7, 6, 7, 10, 11, 9, 13, 14, 15, 11, 17, 14, 19, 15, 21, 22, 23, 17, 21, 26, 20, 21, 29, 30, 31, 21, 33, 34, 35, 21, 37, 38, 39, 28, 41, 42, 43, 33, 35, 46, 47, 32, 43, 42, 51, 39, 53, 40, 55, 39, 57, 58, 59, 45, 61, 62, 49, 41, 65, 66, 67, 51, 69, 70, 71
Offset: 1

Views

Author

Keywords

Comments

Sequence is submultiplicative: a(m*n) <= a(m) * a(n) for m,n coprime. - Charles R Greathouse IV, Dec 19 2022
For n > 1, this is the number of distinct residues of x^r (mod n) with r > 1, that is, the restriction r <= n is not needed. - Charles R Greathouse IV, Dec 22 2022

Crossrefs

For number of k-th power residues mod n, see A000224 (k=2), A052273 (k=4), A052274 (k=5), A052275 (k=6), A085310 (k=7), A085311 (k=8), A085312 (k=9), A085313 (k=10), A085314 (k=12), A228849 (k=13).

Programs

  • Mathematica
    T[n_] := Union@Mod[Flatten@Table[Range[n]^i, {i, 2, n}], n];
    Table[Length[T@n], {n, 1, 144}]
  • PARI
    a(n)=if(n==1, return(0)); my(s); for(k=0,n-1, my(x=Mod(k,n)); forprime(p=2,n, if(ispower(x,p), s++; break))); s\\ Charles R Greathouse IV, Dec 22 2022

Formula

For n > 1, a(n) >= A000010(n) + 1 as all invertible elements of Z/nZ are powers, as is 0. (Conjecture: equality holds exactly for A000430, the primes and squares of primes.) - Charles R Greathouse IV, Dec 23 2022
Previous Showing 11-13 of 13 results.