cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A052357 Least prime in A031934 (lesser of 16-twins) whose distance to the next 16-twin is 6*n.

Original entry on oeis.org

3373, 32917, 2221, 13597, 3391, 37783, 4057, 13537, 8581, 41911, 6763, 7333, 10867, 12457, 1831, 2113, 14683, 37201, 6637, 17581, 25423, 37447, 11353, 11197, 20611, 22453, 57397, 1933, 50707, 37591, 11503, 39733, 2593, 122131, 22921, 9013, 17167, 10273, 9661
Offset: 3

Views

Author

Labos Elemer, Mar 07 2000

Keywords

Comments

The smallest distance between 16-twins [A052380(8)] is 18 and its minimal increment is 6.
a(n) = p is the smallest prime introducing the prime quadruple [p, p+16, p+6n, p+6n+16], which has a difference pattern [16, 6n-16, 16].

Examples

			a(9) = p = 4057 gives [4057, 4073, 4111, 4127] quadruple and [16, 38, 16] distance pattern with 4 primes in the medial gap.
		

Crossrefs

Programs

  • Mathematica
    seq[m_] := Module[{p = Prime[Range[m]], d, i, pp, dd, j}, d = Differences[p]; i = Position[d, 16] // Flatten; pp = p[[i]]; dd = Differences[pp]/6 - 2; j = TakeWhile[FirstPosition[dd, #] & /@ Range[Max[dd]] // Flatten, ! MissingQ[#] &]; pp[[j]]]; seq[12000] (* Amiram Eldar, Mar 05 2025 *)
  • PARI
    list(len) = {my(s = vector(len), c = 0, p1 = 2, q1 = 0, q2, d); forprime(p2 = 3, , if(p2 == p1 + 16, q2 = p1; if(q1 > 0, d = (q2 - q1)/6 - 2; if(d <= len && s[d] == 0, c++; s[d] = q1; if(c == len, return(s)))); q1 = q2); p1 = p2);} \\ Amiram Eldar, Mar 05 2025

Extensions

Incorrect 43207 removed and more terms from Sean A. Irvine, Nov 06 2021
Name and offset corrected by Amiram Eldar, Mar 05 2025

A340573 a(n) is the smallest lesser twin prime p from A001359 such that the distance to the previous lesser twin prime is 6*n.

Original entry on oeis.org

11, 29, 59, 641, 101, 347, 2309, 569, 1931, 521, 1787, 419, 1229, 1871, 3671, 2237, 6551, 1427, 21491, 1607, 12377, 4931, 1019, 23201, 809, 19697, 12539, 2549, 38921, 10709, 37547, 8819, 9239, 34031, 6089, 80447, 15581, 46049, 36341, 14867, 38237, 36779, 87509, 71261, 15137, 40427, 13679, 54917, 41141, 50891
Offset: 1

Views

Author

Artur Jasinski, Jan 12 2021

Keywords

Comments

Lesser twin primes (with the exception of prime 3) are congruent to 5 modulo 6, which implies that distances between successive pairs of twin primes are 6*k.

Examples

			a(1)=11 because 11 - 5 = 6*1.
a(2)=41 because 41 - 29 = 6*2.
a(3)=59 because 59 - 41 = 6*3.
		

Crossrefs

Programs

  • Mathematica
    Table[a[n] = 0, {n, 1, 10000}]; Table[
    b[n] = 0, {n, 1, 10000}]; qq = {}; prev = 5; Do[
    If[Prime[n + 1] - Prime[n] == 2, k = (Prime[n] - prev)/6;
      If[b[k] == 0, a[k] = Prime[n]; b[k] = 1]; prev = Prime[n]], {n, 5,
      10000}]; list = Table[a[n], {n, 1, 50}]
    (* Second program: *)
    pp = Select[Prime[Range[10^4]], PrimeQ[#+2]&];
    dd = Differences[pp];
    a[n_] := pp[[FirstPosition[dd, 6n][[1]]+1]];
    Array[a, 50] (* Jean-François Alcover, Jan 13 2021 *)

Formula

a(n) = A052350(n) + 6*n.
Previous Showing 11-12 of 12 results.