Original entry on oeis.org
2, 5, 24, 134, 802, 4960, 31212, 198504, 1271754, 8192780, 53009614, 344213930, 2241814696, 14637778784, 95786210880
Offset: 0
-
a(n) = if(n==0, 2, 2^(n-1) + sum(m=0, n, binomial(3*n,m))) \\ Jianing Song, May 30 2022
Original entry on oeis.org
3, 13, 68, 394, 2396, 14925, 94248, 600498, 3851012, 24821845, 160646528, 1043245180, 6794418992, 44360061964, 290244849376
Offset: 0
-
a(n) = 2^n + sum(m=0, n+1, binomial(3*n+1,m)) \\ Jianing Song, May 30 2022
A054133
T(2n-1,n) where T is the array in A054126.
Original entry on oeis.org
2, 7, 39, 236, 1479, 9418, 60492, 390720, 2534115, 16489802, 107594725, 703681448, 4611414244, 30273029080, 199045400424
Offset: 1
-
a(n) = if(n==1, 2, 2^(n-2) + sum(m=0, n-1, binomial(3*n-1, m))) \\ Jianing Song, May 30 2022
A141947
A manufactured symmetrical triangular sequence of coefficients based on: t(n,m)=(Gamma[1 - m + n] Hypergeometric2F1Regularized[1, 1 + 2 m - n, 2 + m, -1])/Gamma[ -2 m + n]. The function is taken have backward and half forward.
Original entry on oeis.org
0, 0, 1, 1, 0, 3, 3, 0, 1, 7, 7, 1, 0, 4, 15, 15, 4, 0, 1, 11, 31, 31, 11, 1, 0, 5, 26, 63, 63, 26, 5, 0, 1, 16, 57, 127, 127, 57, 16, 1, 0, 6, 42, 120, 255, 255, 120, 42, 6, 0, 1, 22, 99, 247, 511, 511, 247, 99, 22, 1, 0, 7, 64, 219, 502, 1023, 1023, 502, 219, 64, 7, 0
Offset: 1
{0, 0},
{1, 1},
{0, 3, 3, 0},
{1, 7, 7, 1},
{0, 4, 15, 15, 4, 0},
{1, 11, 31, 31, 11, 1},
{0, 5, 26, 63, 63, 26, 5, 0},
{1, 16, 57, 127, 127, 57, 16, 1},
{0, 6, 42, 120, 255, 255, 120, 42, 6, 0},
{1, 22, 99, 247, 511, 511, 247, 99, 22, 1},
{0, 7, 64, 219, 502, 1023, 1023, 502, 219, 64, 7, 0}
-
In[97]:= Table[Join[Table[(Gamma[1-m+n] Hypergeometric2F1Regularized[1,1+2 m-n,2+m,-1])/Gamma[ -2 m+n],{m,Floor[n/2],0,-1}],Table[(Gamma[1-m+n] Hypergeometric2F1Regularized[1,1+2 m-n,2+m,-1])/Gamma[ -2 m+n],{m,0,Floor[n/2]}]],{n,0,10}]; Flatten[%]
Comments