cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A054131 T(2n,n), array T as in A054126.

Original entry on oeis.org

2, 5, 24, 134, 802, 4960, 31212, 198504, 1271754, 8192780, 53009614, 344213930, 2241814696, 14637778784, 95786210880
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A054126.

Programs

  • PARI
    a(n) = if(n==0, 2, 2^(n-1) + sum(m=0, n, binomial(3*n,m))) \\ Jianing Song, May 30 2022

Formula

a(n) = A052509(4*n,3*n+1) + A052509(4*n,n) = 2^(n-1) + Sum_{m=0..n} binomial(3*n,m). for n >= 1. - Jianing Song, May 30 2022

A054132 T(2n+1,n), array T as in A054126.

Original entry on oeis.org

3, 13, 68, 394, 2396, 14925, 94248, 600498, 3851012, 24821845, 160646528, 1043245180, 6794418992, 44360061964, 290244849376
Offset: 0

Views

Author

Keywords

Programs

  • PARI
    a(n) = 2^n + sum(m=0, n+1, binomial(3*n+1,m)) \\ Jianing Song, May 30 2022

Formula

a(n) = A052509(4*n+2,3*n+2) + A052509(4*n+2,n+1) = 2^n + Sum_{m=0..n+1} binomial(3*n+1,m). - Jianing Song, May 30 2022

A054133 T(2n-1,n) where T is the array in A054126.

Original entry on oeis.org

2, 7, 39, 236, 1479, 9418, 60492, 390720, 2534115, 16489802, 107594725, 703681448, 4611414244, 30273029080, 199045400424
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A054126.

Programs

  • PARI
    a(n) = if(n==1, 2, 2^(n-2) + sum(m=0, n-1, binomial(3*n-1, m))) \\ Jianing Song, May 30 2022

Formula

a(n) = A052509(4*n-2,3*n) + A052509(4*n-2,n-1) = 2^(n-2) + Sum_{m=0..n-1} binomial(3*n-1,m) for n >= 2. - Jianing Song, May 30 2022

Extensions

Definition clarified by Eric Rowland, May 29 2022

A141947 A manufactured symmetrical triangular sequence of coefficients based on: t(n,m)=(Gamma[1 - m + n] Hypergeometric2F1Regularized[1, 1 + 2 m - n, 2 + m, -1])/Gamma[ -2 m + n]. The function is taken have backward and half forward.

Original entry on oeis.org

0, 0, 1, 1, 0, 3, 3, 0, 1, 7, 7, 1, 0, 4, 15, 15, 4, 0, 1, 11, 31, 31, 11, 1, 0, 5, 26, 63, 63, 26, 5, 0, 1, 16, 57, 127, 127, 57, 16, 1, 0, 6, 42, 120, 255, 255, 120, 42, 6, 0, 1, 22, 99, 247, 511, 511, 247, 99, 22, 1, 0, 7, 64, 219, 502, 1023, 1023, 502, 219, 64, 7, 0
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Sep 14 2008

Keywords

Comments

Row sums are:
{0, 2, 6, 16, 38, 86, 188, 402, 846, 1760, 3630}.
The odd n row are the most interesting.
The function was abstracted from the Mathematica generating function for
A052509 by taking out the powers of two:
t(n,m)=(n - m)!*(2^(-m + n)/Gamma[1 - m + n] - Hypergeometric2F1[1, 1 + 2 m - n, 2 + m, -1]/(Gamma[2 + m] Gamma[ -2 m + n])).

Examples

			{0, 0},
{1, 1},
{0, 3, 3, 0},
{1, 7, 7, 1},
{0, 4, 15, 15, 4, 0},
{1, 11, 31, 31, 11, 1},
{0, 5, 26, 63, 63, 26, 5, 0},
{1, 16, 57, 127, 127, 57, 16, 1},
{0, 6, 42, 120, 255, 255, 120, 42, 6, 0},
{1, 22, 99, 247, 511, 511, 247, 99, 22, 1},
{0, 7, 64, 219, 502, 1023, 1023, 502, 219, 64, 7, 0}
		

Crossrefs

Cf. A052509.

Programs

  • Mathematica
    In[97]:= Table[Join[Table[(Gamma[1-m+n] Hypergeometric2F1Regularized[1,1+2 m-n,2+m,-1])/Gamma[ -2 m+n],{m,Floor[n/2],0,-1}],Table[(Gamma[1-m+n] Hypergeometric2F1Regularized[1,1+2 m-n,2+m,-1])/Gamma[ -2 m+n],{m,0,Floor[n/2]}]],{n,0,10}]; Flatten[%]

Formula

t(n,m)=(Gamma[1 - m + n] Hypergeometric2F1Regularized[1, 1 + 2 m - n, 2 + m, -1])/Gamma[ -2 m + n].
Previous Showing 21-24 of 24 results.