A117826
First four terms of the sequence are doubled, then those numbers are tripled and then those numbers are quadrupled, etc.
Original entry on oeis.org
1, 2, 3, 4, 2, 4, 6, 8, 6, 12, 18, 24, 24, 48, 72, 96, 120, 240, 360, 480, 720, 1440, 2160, 2880, 5040, 10080, 15120, 20160, 40320, 80640, 120960, 161280, 362880, 725760, 1088640, 1451520, 3628800, 7257600, 10886400, 14515200, 39916800, 79833600
Offset: 1
-
Table[n!{1, 2, 3, 4}, {n, 11}] // Flatten
A137339
A triangular sequence from a functional coefficient expansion of a raising factorial type: p(x,t)=1/(1-t)^(m*x);m=3.
Original entry on oeis.org
1, 0, 3, 0, 3, 9, 0, 6, 27, 27, 0, 18, 99, 162, 81, 0, 72, 450, 945, 810, 243, 0, 360, 2466, 6075, 6885, 3645, 729, 0, 2160, 15876, 43848, 59535, 42525, 15309, 2187, 0, 15120, 117612, 354564, 548289, 476280, 234738, 61236, 6561, 0, 120960, 986256, 3189348
Offset: 1
{1},
{0, 3},
{0, 3, 9},
{0, 6, 27, 27},
{0, 18, 99, 162, 81},
{0, 72, 450, 945, 810, 243},
{0, 360, 2466, 6075, 6885, 3645, 729},
{0, 2160, 15876, 43848, 59535, 42525, 15309, 2187},
{0, 15120, 117612, 354564, 548289, 476280, 234738, 61236, 6561},
{0, 120960, 986256, 3189348, 5450004, 5455107, 3306744, 1194102, 236196, 19683},
{0, 1088640, 9239184, 31662900, 58618080, 65445975, 46126017, 20667150, 5708070, 885735, 59049}
- Steve Roman, The Umbral Calculus, Dover Publications, New York (1984), pp. 62 - 63
-
# The function BellMatrix is defined in A264428.
BellMatrix(n -> 3*n!, 8); # Peter Luschny, Jan 27 2016
-
Clear[p, g, m]; m = 3; p[t_] = 1/(1 - t)^(m*x); Table[ ExpandAll[n!SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]], {n, 0, 10}]; a = Table[n!* CoefficientList[SeriesCoefficient[ Series[p[t], {t, 0, 30}], n], x], {n, 0, 10}]; Flatten[a]
(* Second program: *)
BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
B = BellMatrix[3#!&, rows = 12];
Table[B[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny *)
Comments