cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-42 of 42 results.

A376863 Triangle of generalized Stirling numbers of the lower level of the hierarchy (section m=1).

Original entry on oeis.org

1, 3, 1, 13, 7, 1, 73, 50, 12, 1, 501, 400, 125, 18, 1, 4051, 3609, 1335, 255, 25, 1, 37633, 36463, 15214, 3485, 460, 33, 1, 394353, 408694, 186949, 48769, 7805, 763, 42, 1, 4596553, 5036792, 2479602, 714364, 131299, 15708, 1190, 52, 1, 58941091, 67714809, 35419350, 11045558, 2256933, 312375, 29190, 1770, 63, 1, 824073141, 986271823, 543025851, 180766890, 40194965, 6221397, 676893, 50970, 2535, 75, 1
Offset: 0

Views

Author

Keywords

Examples

			Triangle starts:
[0]        1;
[1]        3,        1;
[2]       13,        7,        1;
[3]       73,       50,       12,       1;
[4]      501,      400,      125,      18,       1;
[5]     4051,     3609,     1335,     255,      25,       1;
[6]    37633,    36463,    15214,    3485,     460,      33,      1;
[7]   394353,   408694,   186949,   48769,    7805,     763,     42,    1;
[8]  4596553,  5036792,  2479602,  714364,  131299,   15708,   1190,   52,     1;
		

Crossrefs

A000262 (column 0), A052852 (row sums).
Triangle for m=0: A130534.

Programs

  • Maple
    T:=(m,n,k)->add(add(Stirling1(n-j,k)*binomial(n+m,i)*binomial(n,j)*binomial(j,i)*i!*m^(j-i), j=i..n),i=0..n):m:=1:seq(seq(T(m,n,k),k=0..n),n=0..10);

Formula

T(m, n, k) = Sum_{i=0..n} Sum_{j=i..n} Stirling1(n-j, k) * binomial(n+m, i) * binomial(n, j)* binomial(j, i) * i! * m^(j - i), for m = 1.

A349780 Triangle read by rows, T(n, k) = A000262(n) - A349776(n, n - k) for n > 0 and T(0, 0) = 1.

Original entry on oeis.org

1, 0, 1, 0, 1, 3, 0, 1, 7, 13, 0, 1, 13, 49, 73, 0, 1, 21, 141, 381, 501, 0, 1, 31, 331, 1531, 3331, 4051, 0, 1, 43, 673, 4873, 17473, 32593, 37633, 0, 1, 57, 1233, 12993, 71793, 212913, 354033, 394353, 0, 1, 73, 2089, 30313, 241993, 1088713, 2782153, 4233673, 4596553
Offset: 0

Views

Author

Peter Luschny, Nov 30 2021

Keywords

Examples

			[0] 1;
[1] 0, 1;
[2] 0, 1,  3;
[3] 0, 1,  7,   13;
[4] 0, 1, 13,   49,    73;
[5] 0, 1, 21,  141,   381,    501;
[6] 0, 1, 31,  331,  1531,   3331,    4051;
[7] 0, 1, 43,  673,  4873,  17473,   32593,   37633;
[8] 0, 1, 57, 1233, 12993,  71793,  212913,  354033, 394353;
[9] 0, 1, 73, 2089, 30313, 241993, 1088713, 2782153, 4233673, 4596553.
		

Crossrefs

Row sums are A052852 for n >= 1.
Previous Showing 41-42 of 42 results.