cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A141344 Expansion of (2-sqrt(1+4x))/(2-x-sqrt(1+4x)).

Original entry on oeis.org

1, 1, 3, 7, 19, 45, 123, 285, 807, 1771, 5407, 10587, 37627, 57619, 279783, 231615, 2307339, -387531, 21769251, -28249347, 235837791, -539858235, 2857845723, -8509970007, 37342507167, -126289733319, 510715973643, -1837291760147
Offset: 0

Views

Author

Paul Barry, Jun 26 2008

Keywords

Comments

Row sums of A141343. Hankel transform is 2^n.
Image of A052961 under the Riordan array (c(-x),xc(-x)^2), c(x) the g.f. of A000108. [From Paul Barry, Jan 29 2009]

Programs

  • Mathematica
    CoefficientList[Series[(2-Sqrt[1+4x])/(2-x-Sqrt[1+4x]),{x,0,30}],x] (* Harvey P. Dale, Jan 14 2013 *)

Formula

Conjectured to be D-finite with recurrence: 3*(n-1)*a(n) +2*(2*n-11)*a(n-1) +(79-31*n)*a(n-2) +2*(2*n-5)*a(n-3)=0. - R. J. Mathar, Oct 25 2012

A278815 Number of tilings of a 2 X n grid with monomers, dimers, and trimers.

Original entry on oeis.org

1, 2, 7, 29, 109, 416, 1596, 6105, 23362, 89415, 342193, 1309593, 5011920, 19180976, 73406985, 280933906, 1075154535, 4114694797, 15747237101, 60265824784, 230641706484, 882682631025, 3378090801226, 12928199853783, 49477163668857, 189352713633433
Offset: 0

Views

Author

Kathryn Haymaker, Nov 28 2016

Keywords

Comments

The first three terms are the same as A030186 because there are only monomers and dimers in boards with n<3.

Crossrefs

Programs

  • GAP
    a:=[1,2,7,29,109,416];; for n in [7..30] do a[n]:=3*a[n-1]+2*a[n-2] +5*a[n-3]-2*a[n-4]-a[n-6]; od; a; # G. C. Greubel, Oct 28 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-x-x^2-x^3)/(1-3*x-2*x^2-5*x^3+2*x^4+x^6) )); // G. C. Greubel, Oct 28 2019
    
  • Maple
    seq(coeff(series((1-x-x^2-x^3)/(1-3*x-2*x^2-5*x^3+2*x^4+x^6), x, n+1), x, n), n = 0..30); # G. C. Greubel, Oct 28 2019
  • Mathematica
    LinearRecurrence[{3,2,5,-2,0,-1}, {1,2,7,29,109,416}, 30] (* G. C. Greubel, Oct 28 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-x-x^2-x^3)/(1-3*x-2*x^2-5*x^3+ 2*x^4 +x^6)) \\ G. C. Greubel, Oct 28 2019
    
  • Sage
    def A278815_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-x-x^2-x^3)/(1-3*x-2*x^2-5*x^3+2*x^4+x^6) ).list()
    A278815_list(30) # G. C. Greubel, Oct 28 2019
    

Formula

a(n) = 3*a(n-1) + 2*a(n-2) + 5*a(n-3) - 2*a(n-4) - a(n-6).
G.f.: (1 - x - x^2 - x^3)/(1 - 3*x - 2*x^2 - 5*x^3 + 2*x^4 + x^6).
Previous Showing 11-12 of 12 results.