A097499
Numbers of the form p^q + q^p where p and q are consecutive primes.
Original entry on oeis.org
17, 368, 94932, 1996813914, 36314872537968, 8660320497414243870, 244552822542936127033092, 257904243416235317958787975746, 3091062959814255272215316579358416079052
Offset: 1
-
lst={}; Do[p=Prime[n]; q=Prime[n+1]; a=p^q+q^p; AppendTo[lst,a],{n,4!}]; lst (* Vladimir Joseph Stephan Orlovsky, Aug 16 2009 *)
First[#]^Last[#]+Last[#]^First[#]&/@Partition[Prime[Range[10]],2,1] (* Harvey P. Dale, Sep 20 2011 *)
-
f(n) = for(x=1,n,p=prime(x);q=prime(x+1);v=p^q+q^p;print1(v","))
A332849
a(n) = prime(n)^prime(n+1) + prime(n) + prime(n+1).
Original entry on oeis.org
13, 251, 78137, 1977326761, 34522712143955, 8650415919381337963, 239072435685151324847189, 257829627945307727248226067301, 3091058643093537522799545838540043339115, 2159424054808578564166497528588784562372597489, 15148954872646847105498509334067131813327318808179940579
Offset: 1
a(3) = 5^7 + 5 + 7 = 78137.
-
seq(ithprime(i)^ithprime(i+1)+ithprime(i)+ithprime(i+1),i=1..20);
-
Map[#[[1]]^#[[2]]+Total[#]&,Partition[Prime[Range[15]],2,1]] (* Paolo Xausa, Nov 02 2023 *)
A321663
a(n) = prime(n)^prime(n+2).
Original entry on oeis.org
32, 2187, 48828125, 96889010407, 505447028499293771, 1461920290375446110677, 19967568900859523802559065713, 12129821994589221844500501021364910179, 1635170022196481349560959748587682926364327, 1284475787728524720826927656893473276744000042113841709
Offset: 1
a(3)=48828125 because 5 is the 3rd prime, 11 is the 5th prime and 5^11=48828125.
Comments