cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A096856 a(n) = A062402(2^n+1).

Original entry on oeis.org

1, 3, 7, 12, 31, 42, 124, 224, 511, 847, 1953, 2688, 12264, 18816, 29127, 72540, 131071, 195048, 558523, 1077440, 3164112, 4552020, 10890040, 10342080, 54525848, 73260781, 155671040, 318848400, 1080311232, 964580240, 3070642080, 4340711424, 13722819600, 19039027200
Offset: 0

Views

Author

Labos Elemer, Jul 19 2004

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[1, EulerPhi[2^n + 1]], {n, 0, 30}]

Formula

a(n) = A000203(A053285(n)). - Amiram Eldar, Jun 04 2024

Extensions

Offset changed to 0, a(0) prepended and three more terms added by Amiram Eldar, Jun 04 2024

A069925 a(n) = phi(2^n+1)/(2*n).

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 6, 16, 18, 40, 62, 160, 210, 448, 660, 2048, 2570, 5184, 9198, 24672, 32508, 76032, 121574, 344064, 405000, 1005888, 1569780, 4511520, 6066336, 12672000, 23091222, 67004160, 85342752, 200422656, 289531200, 892477440
Offset: 1

Views

Author

Benoit Cloitre, Apr 25 2002

Keywords

Comments

Number of primitive self-reciprocal polynomials of degree 2*n over GF(2). - Joerg Arndt, Jul 04 2012

Crossrefs

Cf. A011260 (degree-n primitive polynomials).
Cf. A000048 (degree-2*n irreducible self-reciprocal polynomials).

Programs

  • Mathematica
    Table[EulerPhi[2^n+1]/(2n),{n,50}] (* Harvey P. Dale, Nov 15 2011 *)
  • PARI
    a(n) = eulerphi(2^n+1)/(2*n); /* Joerg Arndt, Jul 04 2012 */

Formula

a(n) = phi(2^n+1)/(2*n).
a(n) = A053285(n)/(2*n). - Amiram Eldar, Jun 02 2022
Previous Showing 11-12 of 12 results.