cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-34 of 34 results.

A061124 Number of degree-n permutations of order exactly 10.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 504, 4032, 27216, 514080, 4823280, 57081024, 500972472, 4412103696, 60619398840, 686638592640, 9335025764064, 104304736815552, 1180585704051936, 29016515871665280, 478096386437121480
Offset: 1

Views

Author

Vladeta Jovovic, Apr 14 2001

Keywords

Crossrefs

Formula

E.g.f.: exp(x) - exp(x+1/2*x^2) - exp(x+1/5*x^5) + exp(x+1/2*x^2+1/5*x^5+1/10*x^10).
From Benedict W. J. Irwin, May 27 2016: (Start)
Let y1(0)=1, y1(1)=1,
Let -y1(n)-y1(n+1)+(n+2)*y1(n+2)=0,
Let y2(0)=1, y2(1)=1, y2(2)=1/2, y2(3)=1/6, y2(4)=1/24,
Let -y2(n)-y2(n+4)+(n+5)*y2(n+5)=0,
Let y3(0)=1, y3(1)=1, y3(2)=1, y3(3)=2/3, y3(4)=5/12, y3(5)=5/12, y3(6)=11/36, y3(7)=31/126, y3(8)=307/2016, y3(9)=1643/18144,
Let -y3(n)-y3(n+5)-y3(n+8)-y3(n+9)+(n+10)*y3(n+10)=0,
a(n) = 1+n!*(y3(n)-y2(n)-y1(n)).
(End)

A061125 Number of degree-n permutations of order exactly 12.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 420, 3360, 30240, 403200, 4019400, 80166240, 965284320, 12173441280, 162850287600, 2428557331200, 32123543612160, 534678700308480, 8126981741380320, 128338880777251200, 2080312367956502400, 36351373041072122880, 606331931399062693440
Offset: 1

Views

Author

Vladeta Jovovic, Apr 14 2001

Keywords

Crossrefs

Programs

  • Mathematica
    nn=21;Range[0,nn]!CoefficientList[Series[(Exp[x^12/12]-1)Exp[x+x^2/2+x^3/3+x^4/4+x^6/6]+(Exp[x^6/6]-1)(Exp[x^4/4]-1)Exp[x+x^2/2+x^3/3]+(Exp[x^4/4]-1)(Exp[x^3/3]-1)Exp[x^2/2+x],{x,0,nn}],x]//Rest  (* Geoffrey Critzer, Feb 04 2013 *)

Formula

E.g.f.: exp(x + 1/2*x^2) - exp(x + 1/2*x^2 + 1/4*x^4) - exp(x + 1/2*x^2 + 1/3*x^3 + 1/6*x^6) + exp(x + 1/2*x^2 + 1/3*x^3 + 1/4*x^4 + 1/6*x^6 + 1/12*x^12).

A061126 Number of degree-n permutations of order exactly 16.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1307674368000, 22230464256000, 400148356608000, 5068545850368000, 101370917007360000, 1490152480008192000, 24977793950613504000, 343667682838351872000
Offset: 1

Views

Author

Vladeta Jovovic, Apr 14 2001

Keywords

Crossrefs

Formula

E.g.f.: - exp(x + 1/2*x^2 + 1/4*x^4 + 1/8*x^8) + exp(x + 1/2*x^2 + 1/4*x^4 + 1/8*x^8 + 1/16*x^16).

A061127 Number of degree-n permutations of order exactly 24.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1663200, 19958400, 259459200, 4843238400, 72648576000, 988020633600, 14600749363200, 224704121241600, 3614691131251200, 84808750650624000, 1509309706083379200, 29359195162807910400
Offset: 1

Views

Author

Vladeta Jovovic, Apr 14 2001

Keywords

Crossrefs

Programs

  • Mathematica
    nn=22;Range[0,nn]!CoefficientList[Series[(Exp[x^24/24]-1)Exp[x+x^2/2+x^3/3+x^4/4+x^6/6+x^8/8+x^12/12]+(Exp[x^12/12]-1)(Exp[x^8/8]-1)Exp[x+x^2/2+x^3/3+x^4/4+x^6/6]+(Exp[x^8/8]-1)(Exp[x^6/6]-1)Exp[x+x^2/2+x^3/3+x^4/4]+(Exp[x^8/8]-1)(Exp[x^3/3]-1)Exp[x+x^2/2+x^4/4],{x,0,nn}],x]//Rest (* Geoffrey Critzer, Feb 04 2013 *)

Formula

E.g.f.: exp(x + 1/2*x^2 + 1/4*x^4) - exp(x + 1/2*x^2 + 1/4*x^4 + 1/8*x^8) - exp(x + 1/2*x^2 + 1/3*x^3 + 1/4*x^4 + 1/6*x^6 + 1/12*x^12) + exp(x + 1/2*x^2 + 1/3*x^3 + 1/4*x^4 + 1/6*x^6 + 1/8*x^8 + 1/12*x^12 + 1/24*x^24).
Previous Showing 31-34 of 34 results.