cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A287206 Triangle read by rows: T(n,k) is the number of direct sum decompositions of a finite vector space of n dimensions over GF(2) that have exactly k subspaces of dimension 1, n>=0, 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 1, 0, 3, 1, 28, 0, 28, 281, 120, 1680, 0, 840, 9921, 139376, 29760, 277760, 0, 83328, 16078337, 20000736, 140491008, 19998720, 139991040, 0, 27998208, 13596908545, 130684723136, 81282991104, 380636971008, 40637399040, 227569434624, 0, 32509919232, 191426147495937, 443803094908800, 2132774681579520, 884358943211520, 3105997683425280, 265280940933120, 1237977724354560, 0, 132640470466560
Offset: 0

Views

Author

Geoffrey Critzer, May 21 2017

Keywords

Examples

			Triangle T(n,k) begins:
     1;
     0,      1;
     1,      0,     3;
     1,     28,     0,     28,
   281,    120,  1680,      0,  840;
  9921, 139376, 29760, 277760,    0, 83328;
  ...
		

Crossrefs

Cf. A270881 (row sums), A053601 (main diagonal), A289543 (column k=0).

Programs

  • Mathematica
    nn = 8; g[n_] := QFactorial[n, q]*(q - 1)^n*q^Binomial[n, 2] /. q -> 2; e[u_] := Sum[u^r/g[r], {r, 0, nn}];
    Table[Table[(Table[g[n], {n, 0, nn}] CoefficientList[  Series[Exp[e[u] - 1 - u + u t], {u, 0, nn}], {u, t}])[[n,
         k]], {k, 1, n}], {n, 1, nn + 1}] // Grid

Formula

Sum_{n>=0} T(n,k)*u^n/g(n)*t^k = exp(Sum_{r>=0} u^r/g(r) - 1 - u + t*u) where g = A002884.

A298399 Triangle read by rows: T(n,k) is the number of direct sum decompositions of GF(2)^n whose maximal subspace has dimension k, 1<=k<=n, n>=1.

Original entry on oeis.org

1, 3, 1, 28, 28, 1, 840, 1960, 120, 1, 83328, 416640, 39680, 496, 1, 27998208, 295536640, 40354560, 666624, 2016, 1, 32509919232, 733279289344, 138360668160, 2757537792, 10924032, 8128, 1, 132640470466560, 6568159593103360, 1654847774392320, 38430207737856, 181463777280, 176865280, 32640, 1
Offset: 1

Views

Author

Geoffrey Critzer, Jan 18 2018

Keywords

Examples

			Triangle begins:
      1;
      3,      1;
     28,     28,     1;
    840,   1960,   120,   1;
  83328, 416640, 39680, 496,  1;
  ...
		

Crossrefs

Cf. A053601 (column 1), A270881 (row sums), A298561.

Programs

  • Mathematica
    nn = 7; \[Gamma][n_] := (q - 1)^n  q^Binomial[n, 2] FunctionExpand[ QFactorial[n, q]] /. q -> 2; Grid[Map[Select[#, # > 0 &] &,
      Drop[Transpose[Table[Table[\[Gamma][n], {n, 0, nn}] CoefficientList[Series[Exp[Sum[z^i/\[Gamma][i], {i, 1, k + 1}]] -
    Exp[Sum[z^i/\[Gamma][i], {i, 1, k}]], {z, 0, nn}], z], {k, 0, 4}]], 1]]]

A358165 Irregular triangular array read by rows. T(n,k) is the number of direct sum decompositions V_1 + V_2 + ... + V_m = GF(2)^n with the dimensions of the V_i corresponding to the k-th partition of n in canonical ordering, n >= 0, 1 <= k <= A000041(n).

Original entry on oeis.org

1, 1, 1, 3, 1, 28, 28, 1, 120, 280, 1680, 840, 1, 496, 9920, 29760, 138880, 277760, 83328, 1, 2016, 166656, 499968, 357120, 19998720, 19998720, 15554560, 139991040, 139991040, 27998208, 1, 8128, 2731008, 8193024, 48377856, 1354579968, 1354579968, 2902671360, 13545799680, 81274798080, 40637399040, 126427463680, 379282391040, 227569434624, 32509919232
Offset: 0

Views

Author

Geoffrey Critzer, Nov 01 2022

Keywords

Examples

			Triangle begins:
  1;
  1;
  1,   3;
  1,  28,   28;
  1, 120,  280,  1680,    840;
  1, 496, 9920, 29760, 138880, 277760, 83328;
  ...
T(4,3) = 280.  For n=4 the five partitions in canonical ordering are {4}, {3, 1}, {2, 2}, {2, 1, 1}, {1, 1, 1, 1}.  The third partition in this order is {2,2}.  So T(4,3) = A002884(4)/(A002884(2)^2*2!) = 280.
		

Crossrefs

Cf. A270880, A270881 (row sums), A279038, A080575, A000041, A002884, A053601 (main diagonal).

Programs

  • Mathematica
    dsd2[n_, signature_] := Product[2^n - 2^i, {i, 0, n - 1}]/ Product[Product[2^k - 2^i, {i, 0, k - 1}]^signature[[k]]*signature[[k]]!, {k, 1, n}];Table[Map[dsd2[n, #] &,Map[Table[Count[#, i], {i, 1, n}] &, IntegerPartitions[n]]], {n, 0,6}] // Grid

Formula

For i = 1,...,n let a_i be the number of parts of size i in the k-th partition of n in canonical ordering. T(n,k) = A002884(n)/Product_{j=1..n} A002884(j)^a_j*a_j!.

A373536 Number of ways to form a direct sum decomposition of the vector space GF(2)^n and then choose a basis for each subspace in the decomposition.

Original entry on oeis.org

1, 1, 9, 364, 61320, 41747328, 113420740608, 1223445790457856, 52307167449899335680, 8861896666997422628536320, 5951934931285476447488997064704, 15857359709817958217841735837828513792, 167702614892018104786663957623269078052372480, 7044769706183185876455816992603242619680927682396160
Offset: 0

Views

Author

Geoffrey Critzer, Jun 08 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nn = 13; B[n_] := Product[q^n - q^i, {i, 0, n - 1}] /. q -> 2;
    e[x_] := Sum[x^n/B[n], {n, 0, nn}]; f[x_] := Sum[x^n, {n, 0, nn}];
    Table[B[n], {n, 0, nn}] CoefficientList[Series[Exp[f[x] - 1], {x, 0, nn}], x]

Formula

a(n) = A000262(n)*A053601(n).
Sum_{n>=0} a(n)*x^n/A002884(n) = exp(x/(1-x)).
Previous Showing 11-14 of 14 results.