cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-22 of 22 results.

A280596 Expansion of Product_{p prime, k>=2} (1 + x^(p^k)).

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 2, 0, 1, 1, 2, 0, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 3, 1, 1, 3, 3, 1, 1, 3, 3, 2, 1, 3, 4, 2, 1, 3, 4, 2, 1, 3, 4, 2, 1, 3, 4, 3, 1, 4, 4, 3, 1, 4, 5, 3, 2, 4, 6, 3, 2, 4, 6, 4, 2, 4, 6, 4, 2, 4, 6, 4, 2, 4, 7, 4, 2, 4, 7, 5, 2
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 06 2017

Keywords

Comments

Number of partitions of n into distinct proper prime powers (A246547).

Examples

			a(25) = 2 because we have [25] and [16, 9].
		

Crossrefs

Programs

  • Mathematica
    nmax = 107; CoefficientList[Series[Product[(1 + Sign[PrimeOmega[k] - 1] Floor[1/PrimeNu[k]] x^k), {k, 2, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{p prime, k>=2} (1 + x^(p^k)).

A329097 Expansion of Product_{p prime, k>=1} 1 / (1 + x^(p^k)).

Original entry on oeis.org

1, 0, -1, -1, 0, 0, 1, 0, 0, -1, 1, 0, 1, -1, 1, -1, 1, -2, 2, -2, 2, -2, 3, -4, 3, -4, 5, -5, 6, -6, 7, -8, 9, -9, 11, -12, 13, -16, 15, -17, 20, -22, 23, -26, 29, -30, 35, -38, 40, -45, 50, -52, 58, -65, 69, -75, 82, -89, 96, -107, 114, -123, 135, -145, 158, -170, 185, -200, 216, -232, 251
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 04 2019

Keywords

Comments

Convolution inverse of A054685.

Crossrefs

Programs

  • Mathematica
    nmax = 70; CoefficientList[Series[Product[1/(1 + Boole[PrimePowerQ[k]] x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[(-1)^(k/d) Boole[PrimePowerQ[d]] d, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 70}]

Formula

G.f.: Product_{k>=1} 1 / (1 + x^A246655(k)).
Previous Showing 21-22 of 22 results.