cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 32 results. Next

A333490 First index of unequal prime quartets.

Original entry on oeis.org

7, 8, 10, 11, 13, 17, 18, 19, 20, 22, 23, 24, 28, 30, 31, 32, 34, 40, 42, 44, 47, 49, 50, 51, 52, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 70, 75, 76, 78, 79, 82, 83, 85, 86, 87, 89, 90, 91, 94, 95, 96, 97, 98, 99, 104, 111, 112, 113, 114, 115, 116, 119
Offset: 1

Views

Author

Gus Wiseman, May 15 2020

Keywords

Comments

Let g(i) = prime(i + 1) - prime(i). These are numbers k such that g(k), g(k + 1), and g(k + 2) are all different.

Examples

			The first 10 unequal prime quartets:
  17  19  23  29
  19  23  29  31
  29  31  37  41
  31  37  41  43
  41  43  47  53
  59  61  67  71
  61  67  71  73
  67  71  73  79
  71  73  79  83
  79  83  89  97
For example, 83 is the 23rd prime, and the primes (83,89,97,101) have differences (6,8,4), which are all distinct, so 23 is in the sequence.
		

Crossrefs

Primes are A000040.
Prime gaps are A001223.
Second prime gaps are A036263.
Indices of unequal rows of A066099 are A233564.
Lengths of maximal anti-run subsequences of prime gaps are A333216.
Lengths of maximal runs of prime gaps are A333254.
Maximal anti-runs in standard compositions are counted by A333381.
Indices of anti-run rows of A066099 are A333489.
Strictly decreasing prime quartets are A054804.
Strictly increasing prime quartets are A054819.
Equal prime quartets are A090832.
Weakly increasing prime quartets are A333383.
Weakly decreasing prime quartets are A333488.
Unequal prime quartets are A333490 (this sequence).
Partially unequal prime quartets are A333491.
Positions of adjacent equal prime gaps are A064113.
Positions of strict ascents in prime gaps are A258025.
Positions of strict descents in prime gaps are A258026.
Positions of adjacent unequal prime gaps are A333214.
Positions of weak ascents in prime gaps are A333230.
Positions of weak descents in prime gaps are A333231.

Programs

  • Mathematica
    ReplaceList[Array[Prime,100],{_,x_,y_,z_,t_,_}/;y-x!=z-y!=t-z:>PrimePi[x]]

A333491 First index of partially unequal prime quartets.

Original entry on oeis.org

3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 37, 40, 41, 42, 43, 44, 47, 48, 49, 50, 51, 52, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 74, 75, 76, 77, 78, 79, 80, 81, 82
Offset: 1

Views

Author

Gus Wiseman, May 15 2020

Keywords

Comments

Let g(i) = prime(i + 1) - prime(i). These are numbers k such that g(k) != g(k + 1) != g(k + 2), but we may have g(k) = g(k + 2).

Examples

			The first 10 partially unequal prime quartets:
   5  7 11 13
   7 11 13 17
  11 13 17 19
  13 17 19 23
  17 19 23 29
  19 23 29 31
  23 29 31 37
  29 31 37 41
  31 37 41 43
  37 41 43 47
		

Crossrefs

Primes are A000040.
Prime gaps are A001223.
Second prime gaps are A036263.
Indices of unequal rows of A066099 are A233564.
Lengths of maximal anti-runs of prime gaps are A333216.
Lengths of maximal runs of prime gaps are A333254.
Maximal anti-runs in standard compositions are counted by A333381.
Indices of anti-run rows of A066099 are A333489.
Strictly decreasing prime quartets are A054804.
Strictly increasing prime quartets are A054819.
Equal prime quartets are A090832.
Weakly increasing prime quartets are A333383.
Weakly decreasing prime quartets are A333488.
Unequal prime quartets are A333490.
Partially unequal prime quartets are A333491 (this sequence).
Positions of adjacent equal prime gaps are A064113.
Positions of strict ascents in prime gaps are A258025.
Positions of strict descents in prime gaps are A258026.
Positions of adjacent unequal prime gaps are A333214.
Positions of weak ascents in prime gaps are A333230.
Positions of weak descents in prime gaps are A333231.

Programs

  • Mathematica
    ReplaceList[Array[Prime,100],{_,x_,y_,z_,t_,_}/;y-x!=z-y&&z-y!=t-z:>PrimePi[x]]
    PrimePi[#]&/@(Select[Partition[Prime[Range[90]],4,1],#[[2]]-#[[1]]!=#[[3]]-#[[2]]&&#[[3]]-#[[2]]!=#[[4]]-#[[3]]&][[;;,1]]) (* Harvey P. Dale, Aug 05 2025 *)

A333488 First index of weakly decreasing prime quartets.

Original entry on oeis.org

11, 15, 18, 24, 36, 39, 46, 47, 53, 54, 55, 58, 62, 72, 73, 87, 91, 101, 102, 106, 107, 110, 111, 114, 118, 127, 128, 129, 132, 146, 150, 157, 180, 186, 193, 199, 210, 217, 223, 228, 232, 239, 242, 259, 260, 263, 269, 270, 271, 274, 275, 282, 283, 284, 290
Offset: 1

Views

Author

Gus Wiseman, May 15 2020

Keywords

Comments

Let g(i) = prime(i + 1) - prime(i). These are numbers k such that g(k) >= g(k + 1) >= g(k + 2).

Examples

			The first 10 weakly decreasing prime quartets:
   31  37  41  43
   47  53  59  61
   61  67  71  73
   89  97 101 103
  151 157 163 167
  167 173 179 181
  199 211 223 227
  211 223 227 229
  241 251 257 263
  251 257 263 269
For example, 241 is the 53rd prime, and the primes (241,251,257,263) have differences (10,6,6), which are weakly decreasing, so 53 is in the sequence.
		

Crossrefs

Prime gaps are A001223.
Second prime gaps are A036263.
Strictly decreasing prime quartets are A054804.
Strictly increasing prime quartets are A054819.
Equal prime quartets are A090832.
Weakly increasing prime quartets are A333383.
Weakly decreasing prime quartets are A333488 (this sequence).
Unequal prime quartets are A333490.
Partially unequal prime quartets are A333491.
Positions of adjacent equal prime gaps are A064113.
Positions of strict ascents in prime gaps are A258025.
Positions of strict descents in prime gaps are A258026.
Positions of adjacent unequal prime gaps are A333214.
Positions of weak ascents in prime gaps are A333230.
Positions of weak descents in prime gaps are A333231.
Indices of weakly decreasing rows of A066099 are A114994.
Lengths of maximal weakly decreasing subsequences of prime gaps: A333212.
Lengths of maximal strictly increasing subsequences of prime gaps: A333253.

Programs

  • Mathematica
    ReplaceList[Array[Prime,100],{_,x_,y_,z_,t_,_}/;y-x>=z-y>=t-z:>PrimePi[x]]

A376561 Points of downward concavity in the sequence of perfect-powers (A001597).

Original entry on oeis.org

2, 5, 7, 13, 14, 18, 19, 21, 24, 25, 29, 30, 39, 40, 45, 51, 52, 56, 59, 66, 70, 71, 74, 87, 94, 101, 102, 108, 110, 112, 113, 119, 127, 135, 143, 144, 156, 157, 160, 161, 169, 178, 187, 196, 205, 206, 215, 224, 225, 234, 244, 263, 273, 283, 284, 293, 294, 304
Offset: 1

Views

Author

Gus Wiseman, Sep 30 2024

Keywords

Comments

These are points at which the second differences are negative.
Perfect-powers (A001597) are numbers with a proper integer root.
Note that, for some sources, downward concavity is positive curvature.
From Robert Israel, Oct 31 2024: (Start)
The first case of two consecutive numbers in the sequence is a(4) = 13 and a(5) = 14.
The first case of three consecutive numbers is a(293) = 2735, a(294) = 2736, a(295) = 2737.
The first case of four consecutive numbers, if it exists, involves a(k) with k > 69755. (End)

Examples

			The perfect powers (A001597) are:
  1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121, 125, 128, 144, 169, 196, ...
with first differences (A053289):
  3, 4, 1, 7, 9, 2, 5, 4, 13, 15, 17, 19, 21, 4, 3, 16, 25, 27, 20, 9, 18, 13, 33, ...
with first differences (A376559):
  1, -3, 6, 2, -7, 3, -1, 9, 2, 2, 2, 2, -17, -1, 13, 9, 2, -7, -11, 9, -5, 20, 2, ...
with negative positions (A376561):
  2, 5, 7, 13, 14, 18, 19, 21, 24, 25, 29, 30, 39, 40, 45, 51, 52, 56, 59, 66, 70, ...
		

Crossrefs

The version for A000002 is A025505, complement A022297. See also A054354, A376604.
For first differences we have A053289, union A023055, firsts A376268, A376519.
For primes instead of perfect-powers we have A258026.
For upward concavity we have A376560 (probably the complement).
A000961 lists the prime-powers inclusive, exclusive A246655.
A001597 lists the perfect-powers.
A007916 lists the non-perfect-powers.
A112344 counts partitions into perfect-powers, factorizations A294068.
A333254 gives run-lengths of differences between consecutive primes.
Second differences: A036263 (prime), A073445 (composite), A376559 (perfect-power), A376562 (non-perfect-power), A376590 (squarefree), A376593 (nonsquarefree), A376596 (prime-power), A376599 (non-prime-power).

Programs

  • Maple
    N:= 10^6: # to use perfect powers <= N
    P:= {seq(seq(i^m,i=2..floor(N^(1/m))), m=2 .. ilog2(N))}: nP:= nops(P):
    P:= sort(convert(P,list)):
    select(i -> 2*P[i] > P[i-1]+P[i+1], [$2..nP-1]); # Robert Israel, Oct 31 2024
  • Mathematica
    perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All,2]]>1;
    Join@@Position[Sign[Differences[Select[Range[1000],perpowQ],2]],-1]

A054805 Second term of strong prime quartets: prime(m+1)-prime(m) > prime(m+2)-prime(m+1) > prime(m+3)-prime(m+2).

Original entry on oeis.org

37, 67, 97, 223, 277, 307, 457, 479, 613, 631, 719, 751, 853, 877, 929, 1087, 1297, 1423, 1447, 1471, 1543, 1657, 1663, 1693, 1733, 1777, 1783, 1847, 1861, 1867, 1987, 1993, 2053, 2137, 2333, 2371, 2377, 2459, 2467, 2503, 2521, 2531, 2579, 2609, 2647
Offset: 1

Views

Author

Henry Bottomley, Apr 10 2000

Keywords

Comments

Second member of pairs of consecutive primes in A051634 (strong primes). - M. F. Hasler, Oct 27 2018

Crossrefs

Cf. A051634, A051635; A054800 .. A054803: members of balanced prime quartets (= consecutive primes in arithmetic progression); A054804 .. A054818: members of strong prime quartet, quintet, sextet; A054819 .. A054840: members of weak prime quartet, quintet, sextet, septets.

Formula

a(n) = nextprime(A054804(n))= prevprime(A054806(n)), nextprime = A151800, prevprime = A151799. - M. F. Hasler, Oct 27 2018

Extensions

Offset corrected to 1 by M. F. Hasler, Oct 27 2018
Definition clarified by N. J. A. Sloane, Aug 28 2021

A054807 Fourth term of strong prime quartets: prime(m+1)-prime(m) > prime(m+2)-prime(m+1) > prime(m+3)-prime(m+2).

Original entry on oeis.org

43, 73, 103, 229, 283, 313, 463, 491, 619, 643, 733, 761, 859, 883, 941, 1093, 1303, 1429, 1453, 1483, 1553, 1667, 1669, 1699, 1747, 1787, 1789, 1867, 1871, 1873, 1997, 1999, 2069, 2143, 2341, 2381, 2383, 2473, 2477, 2531, 2539, 2543, 2593, 2621, 2659
Offset: 1

Views

Author

Henry Bottomley, Apr 10 2000

Keywords

Crossrefs

Cf. A051634, A051635; A054800 .. A054803: members of balanced prime quartets (= 4 consecutive primes in arithmetic progression); A054804 .. A054818: members of strong prime quartet, quintet, sextet; A054819 .. A054840: members of weak prime quartet, quintet, sextet, septets.

Formula

a(n) = nextprime(A054806(n)), nextprime = A151800. - M. F. Hasler, Oct 27 2018

Extensions

Offset corrected to 1 by M. F. Hasler, Oct 27 2018
Definition clarified by N. J. A. Sloane, Aug 28 2021.

A054806 Third term of strong prime quartets: prime(m+1)-prime(m) > prime(m+2)-prime(m+1) > prime(m+3)-prime(m+2).

Original entry on oeis.org

41, 71, 101, 227, 281, 311, 461, 487, 617, 641, 727, 757, 857, 881, 937, 1091, 1301, 1427, 1451, 1481, 1549, 1663, 1667, 1697, 1741, 1783, 1787, 1861, 1867, 1871, 1993, 1997, 2063, 2141, 2339, 2377, 2381, 2467, 2473, 2521, 2531, 2539, 2591, 2617, 2657
Offset: 1

Views

Author

Henry Bottomley, Apr 10 2000

Keywords

Crossrefs

Cf. A051634, A051635; A054800 .. A054803: members of balanced prime quartets (= 4 consecutive primes in arithmetic progression); A054804 .. A054818: members of strong prime quartet, quintet, sextet; A054819 .. A054840: members of weak prime quartet, quintet, sextet, septets.

Programs

  • Mathematica
    Select[Partition[Prime[Range[400]],4,1],Max[Differences[#,2]]<0&][[All,3]] (* Harvey P. Dale, Aug 28 2021 *)

Formula

a(n) = nextprime(A054805(n)) = prevprime(A054807(n)), nextprime = A151800, prevprime = A151799. - M. F. Hasler, Oct 27 2018

Extensions

Offset corrected to 1 by M. F. Hasler, Oct 27 2018
Definition clarified by N. J. A. Sloane, Aug 28 2021

A054808 First term of strong prime quintets: p(m+1)-p(m) > p(m+2)-p(m+1) > p(m+3)-p(m+2) > p(m+4)-p(m+3).

Original entry on oeis.org

1637, 1759, 1831, 1847, 1979, 2357, 2447, 2477, 2503, 3413, 3433, 4177, 4493, 5237, 5399, 5419, 6011, 6619, 7219, 7253, 7727, 7853, 7907, 8123, 8467, 9551, 9587, 11003, 11353, 11551, 11813, 12379, 13841, 14797, 15107, 15511, 16007, 16273, 16787, 16993, 17359, 18149, 18289
Offset: 1

Views

Author

Henry Bottomley, Apr 10 2000

Keywords

Comments

First member of pairs of consecutive primes in A054804 (first of strong quartets): The first 10^4 terms of that sequence yield over 2000 terms of this sequence. - M. F. Hasler, Oct 27 2018

Crossrefs

Cf. A051634, A051635; A054800 .. A054803: members of balanced prime quartets (= 4 consecutive primes in arithmetic progression); A054804 .. A054818: members of strong prime quartets, quintets, sextets; A054819 .. A054840: members of weak prime quartets, quintets, sextets, septets.

Programs

Formula

a(n) = prevprime(A054809(n)); A054808 = {m = A054804(n) | nextprime(m) = A054804(n+1)}; nextprime = A151800, prevprime = A151799. - M. F. Hasler, Oct 27 2018

Extensions

Edited and offset corrected to 1 by M. F. Hasler, Oct 27 2018

A054835 Second term of weak prime septet: p(m)-p(m-1) < p(m+1)-p(m) < p(m+2)-p(m+1) < p(m+3)-p(m+2) < p(m+4)-p(m+3) < p(m+5)-p(m+4).

Original entry on oeis.org

15377, 64921, 68209, 68899, 128983, 128987, 143513, 154081, 158003, 192377, 221719, 222389, 244463, 249727, 285289, 318679, 337279, 354373, 357829, 374177, 385393, 394729, 402583, 402587, 419599, 439163, 441913, 448379, 457399, 457673, 458191, 482509, 527983, 529813, 577531, 582763, 655913
Offset: 1

Views

Author

Henry Bottomley, Apr 10 2000

Keywords

Crossrefs

Cf. A054800 .. A054803: members of balanced prime quartets (= consecutive primes in arithmetic progression); A054804 .. A054818: members of strong prime quartet, quintet, sextet; A054819 .. A054840: members of weak prime quartet, quintet, sextet, septets.

Formula

a(1) = A229832(5). - Jonathan Sondow, Oct 13 2013
a(n) = A151800(A054834(n)) = A151799(A054836(n)), A151800 = nextprime, A151799 = prevprime; A054835 = { m = A054828(n) | m = nextprime(A054828(n-1)) }. - M. F. Hasler, Oct 27 2018

Extensions

More terms from M. F. Hasler, Oct 27 2018

A054838 Fifth term of weak prime septet: p(m-3)-p(m-4) < p(m-2)-p(m-3) < p(m-1)-p(m-2) < p(m)-p(m-1) < p(m+1)-p(m) < p(m+2)-p(m+1).

Original entry on oeis.org

15401, 64951, 68227, 68917, 129001, 129011, 143537, 154111, 158029, 192407, 221737, 222437, 244493, 249763, 285343, 318701, 337301, 354391, 357883, 374219, 385417, 394747, 402601, 402613, 419623, 439199, 441953, 448421, 457421, 457697, 458219, 482527, 528001
Offset: 1

Views

Author

Henry Bottomley, Apr 10 2000

Keywords

Crossrefs

Cf. A051635; A054800 .. A054803: members of balanced prime quartets (= consecutive primes in arithmetic progression); A054804 .. A054818: members of strong prime quartet, quintet, sextet; A054819 .. A054840: members of weak prime quartet, quintet, sextet, septets.

Programs

  • Mathematica
    Select[Partition[Prime[Range[7000]],7,1],Min[Differences[#,2]]>0&][[All,5]] (* Harvey P. Dale, Oct 15 2016 *)

Formula

a(n) = A151800(A054837(n)) = A151799(A054839(n)), A151800 = nextprime, A151799 = prevprime; A054838 = { m = A054831(n) | m = nextprime(A054831(n-1)) }. - M. F. Hasler, Oct 27 2018

Extensions

More terms from Harvey P. Dale, Oct 15 2016
Previous Showing 11-20 of 32 results. Next