cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A104563 A floretion-generated sequence relating to centered square numbers.

Original entry on oeis.org

0, 1, 3, 5, 8, 13, 19, 25, 32, 41, 51, 61, 72, 85, 99, 113, 128, 145, 163, 181, 200, 221, 243, 265, 288, 313, 339, 365, 392, 421, 451, 481, 512, 545, 579, 613, 648, 685, 723, 761, 800, 841, 883, 925, 968, 1013, 1059, 1105, 1152, 1201, 1251
Offset: 0

Views

Author

Creighton Dement, Mar 15 2005

Keywords

Comments

Floretion Algebra Multiplication Program, FAMP Code: a(n) = 1vesrokseq[A*B] with A = - .5'i - .5i' + .5'ii' + .5e, B = + .5'ii' - .5'jj' + .5'kk' + .5e. RokType: Y[sqa.Findk()] = Y[sqa.Findk()] + Math.signum(Y[sqa.Findk()])*p (internal program code). Note: many slight variations of the "RokType" already exist, such that it has become difficult to assign them all names.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3, -4, 4, -3, 1}, {0, 1, 3, 5, 8}, 60] (* Amiram Eldar, Dec 14 2024 *)
  • PARI
    concat(0, Vec(x*(1 + x)*(1 - x + x^2) / ((1 - x)^3*(1 + x^2)) + O(x^40))) \\ Colin Barker, Apr 29 2019

Formula

G.f.: x*(1 + x^3)/((1 + x^2)*(1 - x)^3).
FAMP result: 2*a(n) + 2*A004525(n+1) = A104564(n) + a(n+1).
Superseeker results:
a(2*n+1) = A001844(n) = 2*n*(n+1) + 1 (Centered square numbers);
a(n+1) - a(n) = A098180(n) (Odd numbers with two times the odd numbers repeated in order between them);
a(n) + a(n+2) = A059100(n+1) = A010000(n+1);
a(n+2) - a(n) = A047599(n+1) (Numbers that are congruent to {0, 3, 4, 5} mod 8);
a(n+2) - 2*a(n+1) + a(n) = A007877(n+3) (Period 4 sequence with initial period (0, 1, 2, 1));
Coefficients of g.f.*(1-x)/(1+x) = convolution of this with A280560 gives A004525;
Coefficients of g.f./(1+x) = convolution of this with A033999 gives A054925.
a(n) = (1/2)*(n^2 + 1 - cos(n*Pi/2)). - Ralf Stephan, May 20 2007
From Colin Barker, Apr 29 2019: (Start)
a(n) = (2 - (-i)^n - i^n + 2*n^2) / 4 where i=sqrt(-1).
a(n) = 3*a(n-1) - 4*a(n-2) + 4*a(n-3) - 3*a(n-4) + a(n-5) for n>4. (End)
a(n) = A011848(n-1)+A011848(n+2). - R. J. Mathar, Sep 11 2019
Sum_{n>=1} 1/a(n) = Pi^2/48 + (Pi/2) * tanh(Pi/2) + (Pi/(4*sqrt(2)) * tanh(Pi/(2*sqrt(2)))). - Amiram Eldar, Dec 14 2024

Extensions

Stephan's formula corrected by Bruno Berselli, Apr 29 2019

A246659 a(n) = binomial(n-h,h)*hypergeometric([h-n/2,h-(n-1)/2],[1],4), h = floor(n/4).

Original entry on oeis.org

1, 1, 3, 7, 9, 28, 95, 306, 285, 1071, 3948, 14148, 11844, 47160, 182655, 690580, 547965, 2244385, 8961953, 35016345, 26885859, 112052304, 456606332, 1824478488, 1369818996, 5777515212, 23884958520, 97002706248, 71654875560, 304865648208, 1273989485439
Offset: 0

Views

Author

Peter Luschny, Sep 18 2014

Keywords

Comments

Also middle column of A132885.
a(n) is the k-th term of n-th row of triangle of A132885 where k = floor(n/4). - Altug Alkan, Nov 29 2015

Crossrefs

Cf. A132885.

Programs

  • Maple
    a := proc(n) local h; h := iquo(n,4); binomial(n-h,h)*hypergeom([h-n/2, h-n/2+1/2],[1],4) end: seq(round(evalf(a(n),99)),n=0..30);
  • Mathematica
    a[n_] := With[{h = Quotient[n, 4]}, Binomial[n-h, h]*Hypergeometric2F1[h-n/2, h-(n-1)/2, 1, 4]];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 18 2024 *)

Formula

a(n) = A132885(n, floor(n/4)), that is, a(n) = A132885(A054925(n+2) - 1). - Altug Alkan, Nov 29 2015
Previous Showing 11-12 of 12 results.