cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A285555 Expansion of q^(-2/5) * (r(q^2) + r(q)^2) / 2 in powers of q where r() is the Rogers-Ramanujan continued fraction.

Original entry on oeis.org

1, -1, 1, -1, 0, 2, -3, 3, -2, -1, 5, -8, 8, -5, -2, 12, -18, 18, -11, -5, 24, -37, 37, -21, -10, 47, -72, 71, -40, -19, 88, -133, 131, -73, -35, 156, -236, 232, -127, -61, 270, -407, 397, -216, -104, 455, -682, 664, -359, -172, 747, -1117, 1084, -582, -279
Offset: 0

Views

Author

Seiichi Manyama, Apr 21 2017

Keywords

Crossrefs

Formula

a(2n) = (A007325(n) + A055101(2n)) / 2, a(2n+1) = A055101(2n+1) / 2.

A285635 G.f.: (1 - x/(1 - x^2/(1 - x^3/(1 - x^4/(1 - ...))))) / (1 + x/(1 + x^2/(1 + x^3/(1 + x^4/(1 + ...))))), a continued fraction.

Original entry on oeis.org

1, -2, 2, -2, 0, 0, -2, 2, -4, 0, -2, -6, 0, -10, -6, -12, -20, -20, -40, -46, -68, -104, -132, -204, -280, -394, -578, -790, -1154, -1616, -2294, -3286, -4614, -6610, -9340, -13278, -18878, -26748, -38060, -53978, -76684, -108912, -154600, -219622, -311812, -442818, -628866, -892962, -1268168
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 23 2017

Keywords

Examples

			G.f.: A(x) = 1 - 2*x + 2*x^2 - 2*x^3 - 2*x^6 + 2*x^7 - 4*x^8 - 2*x^10 - 6*x^11 - ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 48; CoefficientList[Series[(1/(1 + ContinuedFractionK[x^k, 1, {k, 1, nmax}]))/(1/(1 + ContinuedFractionK[-x^k, 1, {k, 1, nmax}])), {x, 0, nmax}], x]
    nmax = 48; CoefficientList[Series[Product[(1 - x^(5 k - 1)) (1 - x^(5 k - 4))/((1 - x^(5 k - 2)) (1 - x^(5 k - 3))), {k, 1, nmax}] Sum[(-1)^k x^(k^2)/Product[(1 -
    x^m), {m, 1, k}], {k, 0, nmax}] / Sum[(-1)^k x^(k (k + 1))/Product[(1 - x^m), {m, 1, k}], {k, 0, nmax}], {x, 0, nmax}], x]

Formula

G.f.: A(x) = R(x)*Q(x)/P(x), where R(x) = Product_{k>=1} (1 - x^(5*k-1))*(1 - x^(5*k-4)) / ((1 - x^(5*k-2))*(1 - x^(5*k-3))), Q(x) = Sum_{k>=0} (-1)^k*x^(k^2) / Product_{m=1..k} (1 - x^m) and P(x) = Sum_{k>=0} (-1)^k*x^(k*(k+1)) / Product_{m=1..k} (1 - x^m).

A285638 G.f.: (1 - x/(1 - x^2/(1 - x^3/(1 - x^4/(1 - ...))))) * (1 + x/(1 + x^2/(1 + x^3/(1 + x^4/(1 + ...))))), a continued fraction.

Original entry on oeis.org

1, 0, -1, -2, 0, 0, -1, -4, -4, -2, -3, -6, -13, -16, -19, -24, -38, -60, -82, -110, -150, -224, -324, -458, -637, -898, -1289, -1838, -2609, -3680, -5223, -7430, -10571, -15004, -21272, -30202, -42903, -60960, -86543, -122860, -174450, -247762, -351883, -499668, -709521, -1007532
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 23 2017

Keywords

Examples

			G.f.: A(x) = 1 - x^2 - 2*x^3 - x^6 - 4*x^7 - 4*x^8 - 2*x^9 - 3*x^10 - 6*x^11 - 13*x^12 - ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 45; CoefficientList[Series[1/((1/(1 + ContinuedFractionK[-x^k, 1, {k, 1, nmax}])) (1/(1 + ContinuedFractionK[x^k, 1, {k, 1, nmax}]))), {x, 0, nmax}], x]
    nmax = 45; CoefficientList[Series[Sum[(-1)^k x^(k^2)/Product[(1 - x^m), {m, 1, k}], {k, 0, nmax}] / (Sum[(-1)^k x^(k (k + 1))/Product[(1 - x^m), {m, 1, k}], {k, 0,
    nmax}] Product[(1 - x^(5 k - 1)) (1 - x^(5 k - 4))/((1 - x^(5 k - 2)) (1 - x^(5 k - 3))), {k, 1, nmax}]), {x, 0, nmax}], x]

Formula

G.f.: A(x) = Q(x)/(R(x)*P(x)), where Q(x) = Sum_{k>=0} (-1)^k*x^(k^2) / Product_{m=1..k} (1 - x^m), R(x) = Product_{k>=1} (1 - x^(5*k-1))*(1 - x^(5*k-4)) / ((1 - x^(5*k-2))*(1 - x^(5*k-3))) and P(x) = Sum_{k>=0} (-1)^k*x^(k*(k+1)) / Product_{m=1..k} (1 - x^m).

A285441 Expansion of q^(-2/5) * r(q)^2 * (1 + r(q) * r(q^2)^2) in powers of q where r() is the Rogers-Ramanujan continued fraction.

Original entry on oeis.org

1, -1, 0, 2, -2, -2, 5, -1, -6, 7, 2, -12, 6, 11, -15, -2, 22, -14, -20, 31, 4, -41, 24, 37, -58, -9, 80, -44, -68, 105, 12, -143, 83, 119, -184, -16, 238, -144, -196, 307, 30, -391, 234, 317, -502, -49, 638, -374, -511, 804, 68, -1014, 600, 802, -1254, -99, 1562
Offset: 0

Views

Author

Seiichi Manyama, Apr 19 2017

Keywords

Comments

G.f. A(q) satisfies: A(q) = q^(-2/5) * r(q)^2 * (1 + k(q)) = q^(-2/5) * r(q^2) * (1 - k(q)), where k(q) = r(q) * r(q^2)^2.

Crossrefs

Cf. A007325 (q^(-1/5) * r(q)), A055101, A112274 (k(q)), A112803 (1 + k(q)), A124242 (1 - k(q)), A285348, A285349.

Programs

  • Ruby
    def s(k, m, n)
      s = 0
      (1..n).each{|i| s += i if n % i == 0 && i % k == m}
      s
    end
    def A007325(n)
      ary = [1]
      a = [0] + (1..n).map{|i| s(5, 1, i) + s(5, 4, i) - s(5, 2, i) - s(5, 3, i)}
      (1..n).each{|i| ary << (1..i).inject(0){|s, j| s - a[j] * ary[-j]} / i}
      ary
    end
    def mul(f_ary, b_ary, m)
      s1, s2 = f_ary.size, b_ary.size
      ary = Array.new(s1 + s2 - 1, 0)
      (0..s1 - 1).each{|i|
        (0..s2 - 1).each{|j|
          ary[i + j] += f_ary[i] * b_ary[j]
        }
      }
      ary[0..m]
    end
    def A285441(n)
      ary1 = A007325(n)
      ary2 = Array.new(n + 1, 0)
      (0..n / 2).each{|i| ary2[i * 2] = ary1[i]}
      ary = [-1] + mul(ary1, mul(ary2, ary2, n), n)[0..-2]
      mul(ary2, (0..n).map{|i| -ary[i]}, n)
    end
    p A285441(100)

A295703 Expansion of R(x*R(x)), where R(x) = 1/(1 + x/(1 + x^2/(1 + x^3/(1 + x^4/(1 + ...))))), a continued fraction (g.f. for A007325).

Original entry on oeis.org

1, -1, 2, -3, 2, 4, -18, 43, -80, 123, -148, 78, 287, -1364, 3858, -8627, 15901, -23076, 20061, 18294, -140623, 420241, -930040, 1655753, -2293975, 1872682, 1835066, -12983537, 37871888, -83222132, 149287250, -212064236, 186932259, 131172644, -1139053896, 3449157957, -7710640256
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 29 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 36; CoefficientList[Series[1/(1 + ContinuedFractionK[(x/(1 + ContinuedFractionK[x^k, 1, {k, 1, nmax}]))^k, 1, {k, 1, nmax}]), {x, 0, nmax}], x]
    g[x_] := g[x] = QPochhammer[x, x^5] QPochhammer[x^4, x^5]/(QPochhammer[x^2, x^5] QPochhammer[x^3, x^5]); a[n_] := a[n] = SeriesCoefficient[g[x g[x]], {x, 0, n}];  Table[a[n], {n, 0, 36}]

Formula

G.f.: 1/(1 + x/(1 + x/(1 + x^2/(1 + x^3/(1 + ...))))/(1 + x^2/(1 + x/(1 + x^2/(1 + x^3/(1 + ...))))^2/(1 + x^3/(1 + x/(1 + x^2/(1 + x^3/(1 + ...))))^3/(1 + ...)))), a continued fraction.
Previous Showing 11-15 of 15 results.