cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A353776 a(n) = Sum_{d|n} (n/d mod d).

Original entry on oeis.org

0, 1, 1, 1, 1, 4, 1, 3, 1, 4, 1, 7, 1, 4, 6, 3, 1, 7, 1, 8, 5, 4, 1, 14, 1, 4, 4, 10, 1, 14, 1, 7, 6, 4, 8, 11, 1, 4, 5, 17, 1, 16, 1, 10, 13, 4, 1, 19, 1, 9, 6, 8, 1, 16, 7, 17, 5, 4, 1, 32, 1, 4, 13, 7, 9, 19, 1, 8, 6, 23, 1, 27, 1, 4, 10, 10, 12, 16, 1, 23
Offset: 1

Views

Author

Sebastian Karlsson, May 07 2022

Keywords

Crossrefs

Programs

  • Haskell
    import Math.NumberTheory.ArithmeticFunctions
    a n = sum $ map (\d -> n `quot` d `rem` d) $ divisorsList n
    
  • Mathematica
    a[n_] := DivisorSum[n, Mod[n/#, #] &]; Array[a, 100] (* Amiram Eldar, May 07 2022 *)
  • PARI
    A353776(n) = sumdiv(n,d,((n/d)%d)); \\ Antti Karttunen, May 08 2022

A344461 a(n) = Sum_{d|n} d^gcd(d,n/d).

Original entry on oeis.org

1, 3, 4, 9, 6, 12, 8, 29, 37, 18, 12, 60, 14, 24, 24, 341, 18, 273, 20, 134, 32, 36, 24, 236, 3151, 42, 784, 240, 30, 72, 32, 4645, 48, 54, 48, 48789, 38, 60, 56, 574, 42, 96, 44, 548, 3462, 72, 48, 21740, 823593, 103203, 72, 750, 54, 6888, 72, 1072, 80, 90, 60, 1160
Offset: 1

Views

Author

Wesley Ivan Hurt, May 19 2021

Keywords

Comments

If p is prime, a(p) = Sum_{d|p} d^gcd(d,p/d) = 1^1 + p^1 = p + 1.

Examples

			a(8) = Sum_{d|8} d^gcd(d,8/d) = 1^1 + 2^2 + 4^2 + 8^1 = 29.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[k^GCD[k, n/k] (1 - Ceiling[n/k] + Floor[n/k]), {k, n}], {n, 80}]
Previous Showing 11-12 of 12 results.