cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A063513 Least balanced numbers (A020492): m such that the quotient sigma(m)/phi(m) equals the n-th prime.

Original entry on oeis.org

3, 2, 56, 12, 2580, 630, 416640, 291060, 1719277560, 587133466920, 33044291280
Offset: 1

Views

Author

Labos Elemer, Jul 31 2001

Keywords

Examples

			n=7: p(7) = 17. a(7) = 416640 = 2^7*3*5*7*31. sigma(416640) = 1566720 = 17*phi(a(7)). phi(416640) = 92160.
		

Crossrefs

Cf. A055234 (smallest x such that sigma(x) = n*phi(x)), A000203, A000010, A020492, A023897.

Formula

a(n) = Min{x : A000203(x)/A000010(x) = p(n)} = Min{x : A023897(x) = p(n)}

Extensions

More terms from Robert G. Wilson v, Aug 09 2001
a(10)-a(11) (from A055234) added by Donovan Johnson, Feb 03 2012

A137602 a(n) is the smallest number m such that sigma(m)=n*pi(m), or 0 if no such m exists.

Original entry on oeis.org

3, 2, 6, 38, 44, 92, 66, 174, 108, 688, 120, 954, 300, 2744, 3186, 2424, 2070, 2904, 1080, 3432, 17004, 1042810, 8976, 32232, 20916, 19260, 76908, 5284804, 98064, 281600, 31320, 4070868, 3013472, 69720, 1126380, 7272564, 52920, 316080, 336840
Offset: 2

Views

Author

Farideh Firoozbakht, Apr 11 2008

Keywords

Comments

There is no number m such that sigma(m)=pi(m).

Examples

			a(29)=5284804 because sigma(5284804)=29*pi(5284804) and 5284804 is the smallest such number.
		

Crossrefs

Cf. A055234.

A291185 a(n) = the smallest number k such that sigma(k) / phi(k) >= n.

Original entry on oeis.org

1, 2, 2, 6, 6, 6, 12, 30, 30, 60, 120, 210, 420, 420, 840, 2520, 9240, 9240, 27720, 55440, 120120, 360360, 720720, 2162160, 6126120, 12252240, 36756720, 116396280, 232792560, 698377680, 2677114440, 5354228880, 26771144400, 155272637520, 465817912560
Offset: 1

Views

Author

Jaroslav Krizek, Aug 19 2017

Keywords

Comments

a(n) = the smallest number k such that A000203(k) / A000010(k) = A289336(k) / A289412(k) >= n.

Examples

			For n = 4; a(4) = 6 because 6 is the smallest number with sigma(6) / phi(6) = 12 / 2 = 6 >= 2.
		

Crossrefs

Programs

  • Magma
    a:=1; S:=[a]; for n in [2..24] do k:=0; flag:= true; while flag do k+:=1; if &+[d: d in Divisors(k)] / EulerPhi(k) ge n then Append(~S, k); a:=k; flag:=false; end if; end while; end for; S;
  • Maple
    b:= 0:
    for n from 1 to 3*10^6 do
    r:= floor(numtheory:-sigma(n)/numtheory:-phi(n));
    if r > b then
        for i from b+1 to r do A[i]:= n od:
        b:= r;
    fi
    od:
    seq(A[i],i=1..b); # Robert Israel, Aug 21 2017
  • Mathematica
    With[{s = KeySort@ PositionIndex@ Array[Floor[DivisorSigma[1, #]/EulerPhi@ #] &, 10^6]}, Function[t, Reverse@ FoldList[Min, #] &@ Reverse@ TakeWhile[#, # > 0 &] &@ ReplacePart[t, Map[# -> Lookup[s, #][[1]] &, Keys@ s]]]@ ConstantArray[0, Max@ Keys@ s]] (* Michael De Vlieger, Aug 19 2017 *) (* or *)
    r = 1; Reap[ Do[z = DivisorSigma[1, n]/EulerPhi@ n; While[z >= r, r++; Sow@ n], {n, 10^6}]][[2, 1]] (* Giovanni Resta, Aug 21 2017 *)

Extensions

a(25)-a(35) from Giovanni Resta, Aug 21 2017
Previous Showing 11-13 of 13 results.