cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-73 of 73 results.

A055286 Number of rooted trees with n nodes and 11 leaves.

Original entry on oeis.org

1, 11, 96, 672, 3980, 20503, 93975, 389453, 1478299, 5192488, 17020341, 52432182, 152709107, 422668071, 1116703046, 2827302880, 6883265229, 16163108315, 36706208439, 80814659013, 172870609803, 359984372056
Offset: 12

Views

Author

Christian G. Bower, May 09 2000

Keywords

Crossrefs

Column 11 of A055277.

A301366 Regular triangle where T(n,k) is the number of same-trees of weight n with k leaves.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 1, 2, 2, 1, 0, 0, 0, 1, 1, 1, 1, 5, 3, 3, 1, 0, 0, 0, 0, 0, 1, 1, 1, 2, 6, 12, 14, 12, 6, 1, 0, 1, 0, 3, 0, 3, 0, 2, 1, 1, 0, 0, 1, 7, 10, 10, 5, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 3, 7, 21, 41, 58, 100, 100, 94, 48, 20
Offset: 1

Views

Author

Gus Wiseman, Mar 19 2018

Keywords

Comments

A same-tree of weight n > 0 is either a single node of weight n, or a finite sequence of two or more same-trees whose weights are all the same and sum to n.

Examples

			Triangle begins:
1
1   1
1   0   1
1   1   2   2
1   0   0   0   1
1   1   1   5   3   3
1   0   0   0   0   0   1
1   1   2   6  12  14  12   6
1   0   1   0   3   0   3   0   2
1   1   0   0   1   7  10  10   5   3
1   0   0   0   0   0   0   0   0   0   1
1   1   3   7  21  41  58 100 100  94  48  20
The T(8,4) = 6 same-trees: (4(2(11))), (4((11)2)), ((22)(22)), ((2(11))4), (((11)2)4), (2222).
		

Crossrefs

Programs

  • Mathematica
    sametrees[n_]:=Prepend[Join@@Table[Tuples[sametrees/@ptn],{ptn,Select[IntegerPartitions[n],Length[#]>1&&SameQ@@#&]}],n];
    Table[Length[Select[sametrees[n],Count[#,_Integer,{-1}]===k&]],{n,12},{k,n}]
  • PARI
    A(n)={my(v=vector(n)); for(n=1, n, v[n] = x + sumdiv(n, d, v[n/d]^d)); apply(p -> Vecrev(p/x), v)}
    {my(v=A(16)); for(n=1, #v, print(v[n]))} \\ Andrew Howroyd, Aug 20 2018

A358723 Number of n-node rooted trees of edge-height equal to their number of leaves.

Original entry on oeis.org

0, 1, 0, 2, 1, 6, 7, 26, 43, 135, 276, 755, 1769, 4648, 11406, 29762, 75284, 195566, 503165, 1310705, 3402317, 8892807, 23231037, 60906456, 159786040, 420144405, 1105673058, 2914252306, 7688019511, 20304253421, 53667498236, 141976081288, 375858854594, 995728192169
Offset: 1

Views

Author

Gus Wiseman, Nov 29 2022

Keywords

Comments

Edge-height (A109082) is the number of edges in the longest path from root to leaf.

Examples

			The a(1) = 0 through a(7) = 7 trees:
  .  (o)  .  ((oo))  ((o)(o))  (((ooo)))  (((o))(oo))
             (o(o))            ((o(oo)))  (((o)(oo)))
                               ((oo(o)))  ((o)((oo)))
                               (o((oo)))  ((o)(o(o)))
                               (o(o(o)))  ((o(o)(o)))
                               (oo((o)))  (o((o)(o)))
                                          (o(o)((o)))
		

Crossrefs

For internals instead of leaves: A011782, ranked by A209638.
For internals instead of edge-height: A185650 aerated, ranked by A358578.
For node-height: A358589 (square trees), ranked by A358577, ordered A358590.
A000081 counts rooted trees, ordered A000108.
A034781 counts rooted trees by nodes and height, ordered A080936.
A055277 counts rooted trees by nodes and leaves, ordered A001263.
A358575 counts rooted trees by nodes and internals, ordered A090181.

Programs

  • Mathematica
    art[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[art/@c],OrderedQ],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[Select[art[n],Count[#,{},{-2}]==Depth[#]-2&]],{n,1,10}]
  • PARI
    \\ Needs R(n,f) defined in A358589.
    seq(n) = {Vec(R(n, (h,p)->polcoef(p,h-1,y)), -n)} \\ Andrew Howroyd, Jan 01 2023

Extensions

Terms a(19) and beyond from Andrew Howroyd, Jan 01 2023
Previous Showing 71-73 of 73 results.