cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-11 of 11 results.

A318295 Prime numbers whose digits can be permuted in multiple ways to yield primes.

Original entry on oeis.org

103, 107, 113, 131, 137, 149, 157, 163, 167, 173, 179, 197, 199, 307, 311, 317, 337, 359, 373, 379, 389, 397, 419, 491, 571, 593, 613, 617, 631, 701, 709, 719, 733, 739, 751, 761, 839, 907, 919, 937, 941, 953, 971, 983, 991, 1009, 1013, 1019, 1021, 1031, 1033
Offset: 1

Views

Author

Pierandrea Formusa, Aug 23 2018

Keywords

Comments

From Robert Israel, Sep 06 2018: (Start)
"Multiple ways" here means more than one nontrivial permutation other than the identity permutation, i.e., there are at least 3 different primes formed by permuting digits of this prime.
Leading 0's are allowed in the permutations. (End)

Examples

			131 belongs to this sequence as there are two nontrivial permutations of its digits which yield other primes, namely 113 and 311.
137 also belongs to this sequence. Even though 371, 713 and 731 are composite, 173 and 317 are prime, satisfying the requirement.
139 does not belong in this sequence. Although 193 is prime, 319, 391, 913 and 931 are all composite.
		

Crossrefs

Subsequence of A055387.

Programs

  • Maple
    filter:= proc(n) local L,Lp,t,i,m,x;
      if not isprime(n) then return false fi;
      L:= convert(n,base,10);
      m:= nops(L);
      Lp:= combinat:-permute(L);
      t:= 1;
      for i from 1 to nops(Lp) do
        if Lp[i]=L then next fi;
        x:= add(Lp[i][j]*10^(j-1),j=1..m);
        if isprime(x) then
          t:= t+1;
          if t = 3 then return true fi;
        fi
      od;
      false
    end proc:
    select(filter, [seq(i,i=11..2000,2)]); # Robert Israel, Sep 06 2018
  • Mathematica
    Select[Prime[Range[200]], Count[PrimeQ[Map[FromDigits, Permutations[IntegerDigits[#]]]], True] > 2 &] (* Alonso del Arte, Aug 24 2018 *)
    Select[Prime[Range[200]],Count[FromDigits/@Rest[Permutations[IntegerDigits[#]]],?PrimeQ]>1&] (* _Harvey P. Dale, Sep 25 2024 *)
  • Python
    from itertools import *
    nmax=1000
    def is_prime(num):
        if num == 0 or num == 1: return(0)
        for k in range(2, num):
           if (num % k) == 0:
               return(0)
        return(1)
    ris = ""
    for i in range(nmax):
        f=0
        lf=[]
        if is_prime(i):
           for p in permutations(str(i), len(str(i))):
                k=int(''.join(p))
                if k!=i and is_prime(k):
                    if k not in lf:
                        f+=1
                        lf.append(k)
                    if f>1:
                        ris = ris+str(i)+","
                        break
    print(ris)

Extensions

More terms from Giovanni Resta, Sep 03 2018
Previous Showing 11-11 of 11 results.