cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-22 of 22 results.

A072051 Smallest k such that gcd(k, reverse(k)) = 11^n.

Original entry on oeis.org

11, 121, 1331, 14641, 121110352, 1332213872, 105923336431682, 4676049710123077, 36606937477221265, 30983951005022964839, 1365869521861436622239
Offset: 1

Views

Author

Labos Elemer, Jun 10 2002

Keywords

Examples

			a(8) = 4676049710123077 = (11^8)*13*1678009, reverse(a(8)) = 7703210179406764 = (11^8)*2*2*157*57223.
		

Crossrefs

Cf. A004086, A055483, A069554, A071686 (=2^n), A072005 (=3^n), A072021 (=5^n), A072050 (=7^n).

Formula

a(n) = A069554(11^n).

Extensions

a(9)-a(11) from Sean A. Irvine, Sep 02 2024

A175823 Numbers k such that gcd(k^2, reverse(k^2)) = k.

Original entry on oeis.org

1, 9, 297, 513, 783, 999, 1323, 1331, 4961, 10989, 11979, 12969, 14733, 20402, 29088, 89109, 99999, 109989, 122221, 188887, 210789, 218097, 377199, 477773, 483516, 525503, 718189, 1099989, 2128806, 2920819, 7769223, 9999999, 10999989, 12222221, 19097181, 21510896
Offset: 1

Views

Author

Michel Lagneau, Sep 13 2010

Keywords

Examples

			297 is in the sequence, because 297^2 = 88209, and reverse(88209) = 90288 = 297*304.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[5000000], GCD[FromDigits[Reverse[IntegerDigits[(#)^2 ]]],#^2]==# &]
  • PARI
    isok(k) = gcd(k^2, fromdigits(Vecrev(digits(k^2)))) == k; \\ Amiram Eldar, May 24 2025

Extensions

More terms from Amiram Eldar, May 24 2025
Previous Showing 21-22 of 22 results.