Original entry on oeis.org
3, 15, 48, 35, 63, 128, 63, 135, 243, 240, 320, 99, 231, 275, 495, 384, 576, 768, 143, 351, 455, 819, 975, 560, 896, 1008, 1344, 195, 495, 675, 1215, 735, 1575, 1875, 768, 1280, 1536, 2048, 2304, 255, 663, 935, 1683, 1071, 2295, 2499, 2975, 1008, 1728
Offset: 1
A070080(4)=1, A070081(4)=3, A070082(4)=3, so a(4)=(1+3+3)*(-1+3+3)*(1-3+3)*(1+3-3)=35.
A336272
Length of longest side of a primitive square Heron triangle, i.e., a triangle with relatively prime integer sides and area the square of a positive integer.
Original entry on oeis.org
17, 26, 120, 370, 392, 567, 680, 697, 847, 1066, 1089, 1183, 1233, 1299, 1371, 1448, 1904, 2009, 2169, 2176, 2281, 2307, 2535, 2600, 2619, 2785, 2845, 2993, 3150, 3370, 3825, 3944, 3983, 4035, 4095, 4290, 4706, 4760, 4879, 4905, 5655, 5811, 5835, 6137, 6375, 6570, 6936, 7202, 7913, 7995
Offset: 1
17 is in the sequence because the triangle with sides [17, 10, 9] has longest side 17 and area 6^2, the square of a positive integer; 26 is in the sequence because the triangle with sides [26, 25, 3] has longest side 26 and has area 6^2, the square of a positive integer.
Triangles with sides [a, b, c] corresponding to the first 8 terms of this sequence are: [17, 10, 9], [26, 25, 3], [120, 113, 17], [370, 357, 41], [392, 353, 255], [567, 424, 305], [680, 441, 337], [697, 657, 104].
- Hugo Pfoertner, Table of n, a(n) for n = 1..79
- Sascha Kurz, On the generation of Heronian triangles, arXiv:1401.6150 [math.NT], 11 Jan 2014.
- Sascha Kurz, On the generation of Heronian triangles, Serdica Journal of Computing Vol. 2 (2008), Pages 181-196.
- Hugo Pfoertner, List of triangle sides, 20000 > i > j > k.
-
# find all square Heron triangles whose longest side is between small and big
small:=1: big:=700:
A336272:=[]:triangles:=[]:
areasq16:=(a+b+c)*(a+b-c)*(a-b+c)*(-a+b+c):
# a>=b>=c
for a from small to big do:
for b from ceil((a+1)/2) to a do:
for c from a-b+1 to b do:
if issqr(areasq16) and issqr(sqrt(areasq16)) and igcd(a,b,c)=1 then
A336272:=[op(A336272),a]:
triangles:=[op(triangles),[a,b,c]]:
end if:
od:
od:
od: A336272;triangles;
-
for(a=1,1200,for(b=ceil((a+1)/2),a,for(c=a-b+1,b,if(gcd([a,b,c])==1,if(ispower((a+b+c)*(a+b-c)*(a-b+c)*(b+c-a),4),print1(a,", ")))))) \\ Hugo Pfoertner, Jul 18 2020
Comments