cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A326488 Numbers m such that A327566(m) = Sum_{k=1..m} isigma(k) is divisible by m, where isigma(k) is the sum of infinitary divisors of k (A049417).

Original entry on oeis.org

1, 2, 160, 285, 2340, 2614, 8903, 81231, 171710, 182712, 434887, 2651907, 56517068, 143714354, 922484770, 5162883263, 39421525873
Offset: 1

Views

Author

Amiram Eldar, Sep 20 2019

Keywords

Comments

The infinitary version of A056550.
The corresponding quotients, A327566(a(n))/a(n), are 1, 2, 118, 209, 1711, 1910, 6506, 59357, 125473, 133513, 317781, 1937798, 41298052, 105014703, 674076450, 3772612983, 28806028088, ...

Examples

			2 is in the sequence since isigma(1) + isigma(2) = 1 + 3 = 4 is divisible by 2.
		

Crossrefs

Cf. A049417 (isigma), A327566 (sums of isigma).
Cf. A056550 (corresponding with sigma), A064611 (unitary), A307043 (exponential), A307161 (bi-unitary).

Programs

  • Mathematica
    f[p_, e_] := p^(2^(-1 + Position[Reverse @ IntegerDigits[e, 2], ?(# == 1 &)])); isigma[1] = 1; isigma[n] := Times @@ (Flatten @ (f @@@ FactorInteger[n]) + 1); seq = {}; s = 0; Do[s = s + isigma [n]; If[Divisible[s, n], AppendTo[seq, n]], {n, 1, 10^6}]; seq

A355544 Numbers k such that the arithmetic mean of the first k squarefree numbers is an integer.

Original entry on oeis.org

1, 3, 6, 37, 75, 668, 1075, 37732, 742767, 1811865, 3140083, 8937770, 108268896, 282951249, 633932500, 1275584757, 60455590365
Offset: 1

Views

Author

Amiram Eldar, Jul 06 2022

Keywords

Comments

Numbers k such that A173143(k) is divisible by k.
The corresponding quotients A173143(k)/k are 1, 2, 4, 29, ..., and the corresponding values of A005117(k) are 1, 3, 7, 59, ... (see the link for more values).

Examples

			3 is a term since the arithmetic mean of the first 3 squarefree numbers, (1+2+3)/3 = 2, is an integer.
		

Crossrefs

Programs

  • Mathematica
    s = Select[Range[10^6], SquareFreeQ]; r = Accumulate[s]/Range[Length[s]]; ind = Position[r, _?IntegerQ] // Flatten
  • PARI
    upto(n) = my(s=0,k=0); forsquarefree(m=1, n, s+=m[1]; k+=1; if(s%k == 0, print1(k, ", "))); \\ Daniel Suteu, Jul 06 2022

Extensions

a(17) from Daniel Suteu, Jul 06 2022

A229883 Numbers k such that Sum_{j=1..k} sigma_*(j) == 0 (mod k), where sigma_*(j) is the sum of the anti-divisors of j (A066417).

Original entry on oeis.org

1, 2, 5, 8, 11, 30, 34, 172, 311, 498, 562, 602, 630, 1742, 4608, 4842, 13664, 16386, 24659, 29150, 56357, 58185, 86267, 88114, 242156, 245325, 839756, 947942, 2524087, 2963552, 4218803, 18281326, 28292036, 30023108, 46376824, 52058844, 85990503, 139548984
Offset: 1

Views

Author

Paolo P. Lava, Oct 02 2013

Keywords

Comments

Tested up to k = 10^6.

Examples

			The sum of the anti-divisors of the numbers from 1 to 8 is 0 + 0 + 2 + 3 + 5 + 4 + 10 + 8 = 32 and 32/8 = 4.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q) local a,b,j,k,n; b:=0;
    for n from 1 to q do a:=0;
    for k from 2 to n-1 do if abs((n mod k)-k/2)<1 then a:=a+k; fi; od;
    b:=b+a; if b mod n=0 then print(n); fi; od; end: P(10^6);

Extensions

a(29)-a(38) from Donovan Johnson, Oct 12 2013

A303900 Numbers k such that the average of all strong divisors of all positive integers <= k is an integer.

Original entry on oeis.org

2, 8, 12, 16, 67, 924122, 1067239
Offset: 1

Views

Author

Ilya Gutkovskiy, May 02 2018

Keywords

Comments

We say d is a strong divisor of k iff d is a divisor of k and d > 1.
Numbers k such that A002541(k) | A024917(k).
a(8) > 10^12. - Giovanni Resta, May 05 2018

Crossrefs

Extensions

a(3)-a(7) corrected by Daniel Suteu, May 03 2018

A309272 Numbers m such that m divides A173290(m) = Sum_{k=1..m} psi(k), where psi is the Dedekind psi function (A001615).

Original entry on oeis.org

1, 2, 5, 15, 31, 40, 66, 81, 315, 966, 1398, 1768, 30166, 32335, 98734, 388033, 591597, 1375056, 14966304, 15160528, 50793208, 51302236, 99253376, 110994356, 230465053, 402340268, 497982399, 2027319577, 2879855394, 18450762682, 29922126368, 31711273834, 40583934786
Offset: 1

Views

Author

Amiram Eldar, Oct 23 2019

Keywords

Comments

The corresponding quotients are 1, 2, 4, 12, 24, 31, 51, 62, 240, 735, 1063, 1344, 22924, 24572, 75029, 294870, 449560, 1044918, 11373028, 11520620, 38598210, 38985025, 75423522, 84345597, 175132440, 305741942, 378421246, 1540578144, 2188427680, 14020898356, 22738089456, 24097678498, 30840092321, ...

Examples

			2 is in the sequence since psi(1) + psi(2) = 1 + 3 = 4 is divisible by 2.
5 is in the sequence since psi(1) + psi(2) + ... + psi(5) = 1 + 3 + 4 + 6 + 6 = 20 is divisible by 5.
		

Crossrefs

Programs

  • Mathematica
    psi[1] = 1; psi[n_] := n * Times @@ (1 + 1/Transpose[FactorInteger[n]][[1]]); seq = {}; s = 0; Do[s += psi[n]; If[Divisible[s, n], AppendTo[seq, n]], {n, 1, 10^4}]; seq

Extensions

a(31)-a(33) from Giovanni Resta, Oct 24 2019

A332270 Numbers k such that Sum_{j=1..k} j*floor(k/j) is divisible by k+1.

Original entry on oeis.org

3, 4, 14, 29, 82, 67117, 86249, 140064, 185699, 392081, 2915083, 6315155, 9723681, 17754993, 820165642, 9388829301, 143904506919, 192738887697
Offset: 1

Views

Author

Seiichi Manyama, May 04 2020

Keywords

Comments

a(19) > 5*10^11. - Giovanni Resta, May 05 2020

Crossrefs

Programs

  • Mathematica
    q[n_] := Divisible[Sum[j * Floor[n/j], {j, 1, n}], n + 1]; Select[Range[100], q] (* Amiram Eldar, May 03 2021 *)
  • PARI
    for(k=1, 1e4, if(sum(j=1, k, k\j*j)%(k+1)==0, print1(k", ")))
    
  • PARI
    s=0; for(k=1, 1e7, s+=sigma(k); if(s%(k+1)==0, print1(k", ")))

Extensions

a(16)-a(18) from Giovanni Resta, May 05 2020

A355541 Numbers k such that A061201(k) is divisible by k.

Original entry on oeis.org

1, 2, 7, 31, 1393, 5012, 7649, 50235, 147296, 426606, 611769, 3491681, 9324642, 11815109, 53962364, 82680301, 96789197, 230882246, 378444764, 1489280093, 1489280606, 3651325650, 5891877914, 5891877947, 5891877966, 58604540872
Offset: 1

Views

Author

Amiram Eldar, Jul 06 2022

Keywords

Comments

Numbers k such that the mean value of A007425 over the range 1..k is an integer.
The corresponding quotients are 1, 2, 4, 9, 32, 43, 47, 67, 80, 94, 99, 125, 141, 145, 172, 180, 183, 200, 210, 239, 239, 259, 270, 270, 270, 326, ... .
a(27) > 7.5*10^10, if it exists.

Examples

			7 is a term since A061201(7) = 28 = 4 * 7 is divisible by 7.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (e+1)*(e+2)/2;  d3[1] = 1; d3[n_] := Times @@ f @@@ FactorInteger[n]; sum = 0; seq = {}; Do[sum += d3[n]; If[Divisible[sum, n], AppendTo[seq, n]], {n, 1, 10^6}]; seq

A355542 Numbers k such that A272718(k) is divisible by k.

Original entry on oeis.org

1, 2, 3, 11, 13, 50, 81, 96, 395, 640, 59136, 65719, 632621, 1342813, 2137073, 2755370, 3446370, 10860093, 321939569, 1872591111, 8858043355
Offset: 1

Views

Author

Amiram Eldar, Jul 06 2022

Keywords

Comments

Numbers k such that the mean value of A018804 over the range 1..k is an integer.
The corresponding quotients are 1, 2, 3, 13, 16, 80, 141, 172, 865, 1500, 219530, 246058, 2804048, 6259092, 10263121, 13445321, 17051542, 57521176, 2036840289, 12849666590, 64967828053, ... .
a(22) > 6.5*10^10, if it exists.

Examples

			11 is a term since A061201(11) = 143 = 11 * 13 is divisible by 11.
		

Crossrefs

Programs

  • Mathematica
    f[p_,e_] := (e*(p-1)/p+1)*p^e; pillai[1] = 1; pillai[n_] := Times @@ f @@@ FactorInteger[n]; seq = {}; sum = 0; Do[sum += pillai[n]; If[Divisible[sum, n], AppendTo[seq, n]], {n, 1, 10^6}]; seq
Previous Showing 11-18 of 18 results.