cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A201972 Triangle T(n,k), read by rows, given by (2,1/2,-1/2,0,0,0,0,0,0,0,...) DELTA (2,-1/2,1/2,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 2, 2, 5, 8, 3, 12, 28, 20, 4, 29, 88, 94, 40, 5, 70, 262, 372, 244, 70, 6, 169, 752, 1333, 1184, 539, 112, 7, 408, 2104, 4472, 5016, 3144, 1064, 168, 8, 985, 5776, 14316, 19408, 15526, 7344, 1932, 240, 9
Offset: 0

Views

Author

Philippe Deléham, Dec 07 2011

Keywords

Comments

Diagonal sums: A201967(n), row sums: A000302(n) (powers of 4).

Examples

			Triangle begins:
    1;
    2,   2;
    5,   8,    3;
   12,  28,   20,    4;
   29,  88,   94,   40,   5;
   70, 262,  372,  244,  70,   6;
  169, 752, 1333, 1184, 539, 112, 7;
		

Crossrefs

Programs

  • Maple
    T:= proc(n, k) option remember;
          if k=0 and n=0 then 1
        elif k<0 or  k>n  then 0
        else 2*T(n-1,k) + 2*T(n-1,k-1) + T(n-2,k) - T(n-2,k-2)
          fi; end:
    seq(seq(T(n, k), k=0..n), n=0..10); # G. C. Greubel, Feb 17 2020
  • Mathematica
    With[{m = 8}, CoefficientList[CoefficientList[Series[1/(1-2*(y+1)*x+(y+1)*(y-1)*x^2), {x, 0 , m}, {y, 0, m}], x], y]] // Flatten (* Georg Fischer, Feb 17 2020 *)
  • PARI
    T(n,k) = if(nMichel Marcus, Feb 17 2020
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k<0 or k>n): return 0
        elif (k==0 and n==0): return 1
        else: return 2*T(n-1,k) + 2*T(n-1,k-1) + T(n-2,k) - T(n-2,k-2)
    [[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Feb 17 2020

Formula

G.f.: 1/(1-2*(y+1)*x+(y+1)*(y-1)*x^2).
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A000129(n+1), A000302(n), A138395(n), A057084(n) for x = -1, 0, 1, 2, 3, respectively.
Sum_{k=0..n} T(n,k)*x^(n-k) = A000027(n), A000302(n), A090018(n), A057091(n) for x = 0, 1, 2, 3, respectively.
T(n,k) = 2*T(n-1,k) + 2*T(n-1,k-1) + T(n-2,k) - T(n-2,k-2) with T(0,0) = 1, T(n,k) = 0 if k < 0 or if n < k.

Extensions

a(40) corrected by Georg Fischer, Feb 17 2020

A370178 a(n) = floor(x*a(n-1)) for n > 0 where x = 4 + 2*sqrt(6), a(0) = 1.

Original entry on oeis.org

1, 8, 71, 631, 5615, 49967, 444655, 3956975, 35213039, 313360111, 2788585199, 24815562479, 220833181423, 1965189951215, 17488185061103, 155627000098543, 1384921481277167, 12324387851005679, 109674474658262767, 975990900074147567, 8685322997859282671
Offset: 0

Views

Author

Philippe Deléham, Apr 02 2024

Keywords

Crossrefs

Cf. A057091, A090654 (x value), A370174.

Programs

  • Mathematica
    LinearRecurrence[{9,0,-8},{1,8,71},21] (* James C. McMahon, Apr 21 2024 *)

Formula

a(n) = 9*a(n-1) - 8*a(n-3) for n>2, a(0) = 1, a(1) = 8, a(2) = 71.
a(n) = 8*a(n-1) + 8*a(n-2) - 1.
G.f.: (1-x-x^2)/((1-x)*(1-8*x-8*x^2)).
a(n) = Sum_{k=0..n} A370174(n,k)*7^k.
a(n) = (7*(8-3*sqrt(6))*(4-2*sqrt(6))^n + 7*(8+3*sqrt(6))*(4+2*sqrt(6))^n + 8)/120.
a(n) = (14*A057091(n) + 7*A057091(n-1) + 1)/15.
Previous Showing 11-12 of 12 results.