cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-26 of 26 results.

A122288 Signature permutations of KROF-transformations of Catalan automorphisms in table A122203.

Original entry on oeis.org

0, 1, 0, 2, 1, 0, 3, 3, 1, 0, 4, 2, 2, 1, 0, 5, 8, 3, 2, 1, 0, 6, 7, 4, 3, 2, 1, 0, 7, 6, 6, 5, 3, 2, 1, 0, 8, 4, 5, 4, 5, 3, 2, 1, 0, 9, 5, 7, 6, 6, 6, 3, 2, 1, 0, 10, 22, 8, 7, 4, 5, 6, 3, 2, 1, 0, 11, 21, 9, 8, 7, 4, 4, 4, 3, 2, 1, 0, 12, 20, 14, 13, 8, 7, 5, 5, 4, 3, 2, 1, 0, 13, 17, 11, 12, 13
Offset: 0

Views

Author

Antti Karttunen, Sep 01 2006, Jun 20 2007

Keywords

Comments

Row n is the signature permutation of the Catalan automorphism which is obtained from the n-th automorphism in the table A122203 with the recursion scheme "KROF", or equivalently row n is obtained as KROF(SPINE(n-th row of A089840)). See A122202 and A122203 for the description of KROF and SPINE. Moreover, each row of A122288 can be obtained as the "NEPEED" transform of the corresponding row in A122285. (See A122284 for the description of NEPEED). Each row occurs only once in this table. Inverses of these permutations can be found in table A122287. This table contains also all the rows of A122202 and A089840.

References

  • A. Karttunen, paper in preparation, draft available by e-mail.

Crossrefs

The first 22 rows of this table: row 0 (identity permutation): A001477, 1: A069768, 2: A057164, 3: A130981, 4: A130983, 5: A130982, 6: A130984, 7: A130985, 8: A130987, 9: A130989, 10: A130991, 11: A130993, 12: A131009, 13: A130995, 14: A130997, 15: A130999, 16: A131001, 17: A057505, 18: A131003, 19: A131005, 20: A131007, 21: A057163. Other rows: 251: A122354, 3613: A057512, 65352: A074682.

A057511 Permutation of natural numbers: rotations of all branches of the rooted plane trees encoded by A014486.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 5, 7, 8, 9, 11, 14, 16, 19, 10, 15, 12, 17, 20, 13, 18, 21, 22, 23, 25, 28, 30, 33, 37, 39, 42, 44, 53, 51, 47, 56, 60, 24, 29, 38, 43, 52, 26, 40, 31, 45, 48, 34, 54, 57, 61, 27, 41, 32, 46, 55, 35, 49, 58, 62, 36, 50, 59, 63, 64, 65, 67, 70, 72, 75, 79, 81
Offset: 0

Views

Author

Antti Karttunen, Sep 03 2000

Keywords

Crossrefs

Inverse permutation: A057512. Cycle counts: A057513. Number of fixed objects: A057546. Max. cycle lengths are given by Landau's function A000793.

Programs

  • Maple
    # See A057509 for rotateL, A057501 for other procedures.
    map(CatalanRankGlobal,map(DeepRotateL, A014486));
    DeepRotateL := n -> pars2binexp(deeprotateL(binexp2pars(n)));
    deeprotateL := proc(a) if 0 = nops(a) or list <> whattype(a) then (a) else rotateL(map(deeprotateL,a)); fi; end;

A127301 Matula-Goebel signatures for plane general trees encoded by A014486.

Original entry on oeis.org

1, 2, 4, 3, 8, 6, 6, 7, 5, 16, 12, 12, 14, 10, 12, 9, 14, 19, 13, 10, 13, 17, 11, 32, 24, 24, 28, 20, 24, 18, 28, 38, 26, 20, 26, 34, 22, 24, 18, 18, 21, 15, 28, 21, 38, 53, 37, 26, 37, 43, 29, 20, 15, 26, 37, 23, 34, 43, 67, 41, 22, 29, 41, 59, 31, 64, 48, 48, 56, 40, 48, 36
Offset: 0

Views

Author

Antti Karttunen, Jan 16 2007

Keywords

Comments

This sequence maps A000108(n) oriented (plane) rooted general trees encoded in range [A014137(n-1)..A014138(n)] of A014486 to A000081(n+1) distinct non-oriented rooted general trees, encoded by their Matula-Goebel numbers. The latter encoding is explained in A061773.
A005517 and A005518 give the minimum and maximum value occurring in each such range.
Primes occur at positions given by A057548 (not in order, and with duplicates), and similarly, semiprimes, A001358, occur at positions given by A057518, and in general, A001222(a(n)) = A057515(n).
If the signature-permutation of a Catalan automorphism SP satisfies the condition A127301(SP(n)) = A127301(n) for all n, then it preserves the non-oriented form of a general tree, which implies also that it is Łukasiewicz-word permuting, satisfying A129593(SP(n)) = A129593(n) for all n >= 0. Examples of such automorphisms include A072796, A057508, A057509/A057510, A057511/A057512, A057164, A127285/A127286 and A127287/A127288.
A206487(n) tells how many times n occurs in this sequence. - Antti Karttunen, Jan 03 2013

Examples

			A000081(n+1) distinct values occur each range [A014137(n-1)..A014138(n-1)]. As an example, A014486(5) = 44 (= 101100 in binary = A063171(5)), encodes the following plane tree:
.....o
.....|
.o...o
..\./.
...*..
Matula-Goebel encoding for this tree gives a code number A000040(1) * A000040(A000040(1)) = 2*3 = 6, thus a(5)=6.
Likewise, A014486(6) = 50 (= 110010 in binary = A063171(6)) encodes the plane tree:
.o
.|
.o...o
..\./.
...*..
Matula-Goebel encoding for this tree gives a code number A000040(A000040(1)) * A000040(1) = 3*2 = 6, thus a(6) is also 6, which shows these two trees are identical if one ignores their orientation.
		

Crossrefs

a(A014138(n)) = A007097(n+1), a(A014137(n)) = A000079(n+1) for all n.
a(|A106191(n)|) = A033844(n-1) for all n >= 1.
For standard instead of binary encoding we have A358506.
A000108 counts ordered rooted trees, unordered A000081.
A014486 lists binary encodings of ordered rooted trees.

Programs

  • Mathematica
    mgnum[t_]:=If[t=={},1,Times@@Prime/@mgnum/@t];
    binbalQ[n_]:=n==0||With[{dig=IntegerDigits[n,2]},And@@Table[If[k==Length[dig],SameQ,LessEqual][Count[Take[dig,k],0],Count[Take[dig,k],1]],{k,Length[dig]}]];
    bint[n_]:=If[n==0,{},ToExpression[StringReplace[StringReplace[ToString[IntegerDigits[n,2]/.{1->"{",0->"}"}],","->""],"} {"->"},{"]]];
    Table[mgnum[bint[n]],{n,Select[Range[0,1000],binbalQ]}] (* Gus Wiseman, Nov 22 2022 *)
  • Scheme
    (define (A127301 n) (*A127301 (A014486->parenthesization (A014486 n)))) ;; A014486->parenthesization given in A014486.
    (define (*A127301 s) (if (null? s) 1 (fold-left (lambda (m t) (* m (A000040 (*A127301 t)))) 1 s)))

Formula

A001222(a(n)) = A057515(n) for all n.

A057510 Permutation of natural numbers: rotations of the bottom branches of the rooted plane trees encoded by A014486. (to opposite direction of A057509).

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 5, 7, 8, 9, 14, 10, 16, 19, 11, 15, 12, 17, 18, 13, 20, 21, 22, 23, 37, 24, 42, 51, 25, 38, 26, 44, 47, 27, 53, 56, 60, 28, 39, 29, 43, 52, 30, 40, 31, 45, 46, 32, 48, 49, 50, 33, 41, 34, 54, 55, 35, 57, 58, 59, 36, 61, 62, 63, 64, 65, 107, 66, 121, 149, 67
Offset: 0

Views

Author

Antti Karttunen, Sep 03 2000

Keywords

Crossrefs

Inverse of A057509 and the car/cdr-flipped conjugate of A069776 and also composition of A057502 & A069770, i.e. A057510(n) = A057163(A069776(A057163(n))) = A069770(A057502(n)).
Cycle counts given by A003239. Cf. also A057512, A057513.

Programs

  • Maple
    # reverse given in A057508, for CountCycles, see A057502, for other procedures, follow A057501.
    map(CatalanRankGlobal,map(RotateBottomBranchesR, A014486));
    RotateBottomBranchesR := n -> pars2binexp(rotateR(binexp2pars(n)));
    rotateR := a -> reverse(rotateL(reverse(a)));
    RotBBPermutationCycleCounts := proc(upto_n) local u,n,a,r,b; a := []; for n from 0 to upto_n do b := []; u := (binomial(2*n,n)/(n+1)); for r from 0 to u-1 do b := [op(b),1+CatalanRank(n,RotateBottomBranchesL(CatalanUnrank(n,r)))]; od; a := [op(a),CountCycles(b)]; od; RETURN(a); end;
    A003239 := RotBBPermutationCycleCounts(some_value); (e.g. 9. Cf. A057502, A057162)

A215406 A ranking algorithm for the lexicographic ordering of the Catalan families.

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4
Offset: 0

Views

Author

Peter Luschny, Aug 09 2012

Keywords

Comments

See Antti Karttunen's code in A057117. Karttunen writes: "Maple procedure CatalanRank is adapted from the algorithm 3.23 of the CAGES (Kreher and Stinson) book."
For all n>0, a(A014486(n)) = n = A080300(A014486(n)). The sequence A080300 differs from this one in that it gives 0 for those n which are not found in A014486. - Antti Karttunen, Aug 10 2012

Crossrefs

Programs

  • Maple
    A215406 := proc(n) local m,a,y,t,x,u,v;
    m := iquo(A070939(n), 2);
    a := A030101(n);
    y := 0; t := 1;
    for x from 0 to 2*m-2 do
        if irem(a, 2) = 1 then y := y + 1
        else u := 2*m - x;
             v := m-1 - iquo(x+y,2);
             t := t + A037012(u,v);
             y := y - 1 fi;
        a := iquo(a, 2) od;
    A014137(m) - t end:
    seq(A215406(i),i=0..199); # Peter Luschny, Aug 10 2012
  • Mathematica
    A215406[n_] := Module[{m, d, a, y, t, x, u, v}, m = Quotient[Length[d = IntegerDigits[n, 2]], 2]; a = FromDigits[Reverse[d], 2]; y = 0; t = 1; For[x = 0, x <= 2*m - 2, x++, If[Mod[a, 2] == 1, y++, u = 2*m - x; v = m - Quotient[x + y, 2] - 1; t = t - Binomial[u - 1, v - 1] + Binomial[u - 1, v]; y--]; a = Quotient[a, 2]]; (1 - I*Sqrt[3])/2 - 4^(m + 1)*Gamma[m + 3/2]*Hypergeometric2F1[1, m + 3/2, m + 3, 4]/(Sqrt[Pi]*Gamma[m + 3]) - t]; Table[A215406[n] // Simplify, {n, 0, 86}] (* Jean-François Alcover, Jul 25 2013, translated and adapted from Peter Luschny's Maple program *)
  • Sage
    def A215406(n) : # CatalanRankGlobal(n)
        m = A070939(n)//2
        a = A030101(n)
        y = 0; t = 1
        for x in (1..2*m-1) :
            u = 2*m - x; v = m - (x+y+1)/2
            mn = binomial(u, v) - binomial(u, v-1)
            t += mn*(1 - a%2)
            y -= (-1)^a
            a = a//2
        return A014137(m) - t

A122364 Row 2 of A122290.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 5, 7, 8, 9, 10, 14, 16, 19, 11, 15, 12, 17, 18, 13, 20, 21, 22, 23, 37, 25, 26, 27, 24, 38, 42, 44, 53, 51, 47, 56, 60, 28, 29, 39, 43, 52, 30, 40, 31, 45, 54, 32, 48, 49, 50, 33, 41, 34, 46, 55, 35, 57, 58, 62, 36, 61, 59, 63, 64, 65, 70, 66, 121, 149, 107
Offset: 0

Views

Author

Antti Karttunen, Sep 01 2006

Keywords

Comments

The signature-permutation of the automorphism which is derived from the second non-recursive automorphism *A072796 with KROF(KROF(*A072796)) = KROF(*A057512). (see A122202 for the definition of KROF).

Crossrefs

Inverse: A122363.
Previous Showing 21-26 of 26 results.