cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A361419 Numbers k such that there is a unique number m for which the sum of the aliquot infinitary divisors of m (A126168) is k.

Original entry on oeis.org

0, 6, 7, 9, 11, 18, 32, 44, 56, 62, 72, 82, 94, 96, 98, 102, 104, 110, 116, 122, 132, 136, 138, 146, 150, 152, 178, 180, 182, 210, 222, 226, 230, 236, 238, 242, 248, 252, 264, 272, 284, 292, 296, 304, 322, 332, 338, 342, 350, 356, 360, 374, 382, 390, 392, 404
Offset: 1

Views

Author

Amiram Eldar, Mar 11 2023

Keywords

Comments

Numbers k such that A331973(k) = 1.

Crossrefs

Similar sequences: A057709, A357324.

Programs

  • Mathematica
    f[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; is[1] = 0; is[n_] := Times @@ f @@@ FactorInteger[n] - n;
    seq[max_] := Module[{v = Table[0, {max}], i}, Do[i = is[k] + 1; If[i <= max, v[[i]]++], {k, 1, max^2}]; -1 + Position[v, 1] // Flatten];
    seq[500]
  • PARI
    s(n) = {my(f = factor(n), b); prod(i=1, #f~, b = binary(f[i, 2]); prod(k=1, #b, if(b[k], f[i, 1]^(2^(#b-k)) + 1, 1))) - n; }
    lista(nmax) = {my(v = vector(nmax+1)); for(k=1, nmax^2, i = s(k) + 1; if(i <= nmax+1, v[i] += 1)); for(i = 1, nmax+1, if(v[i] == 1, print1(i-1, ", "))); }

Formula

a(n) = A126168(A361420(n)).

A366110 a(n) is the difference between the maximum and minimum number whose proper divisors sum to n, or 0 if there is no such number.

Original entry on oeis.org

0, 0, 0, 0, 19, 0, 39, 0, 0, 0, 0, 8, 147, 17, 14, 16, 0, 12, 327, 73, 18, 28, 0, 48, 0, 64, 0, 72, 0, 189, 903, 202, 0, 160, 0, 168, 0, 0, 37, 328, 1651, 387, 1767, 280, 34, 364, 0, 476, 54, 448, 0, 432, 2767, 677, 0, 604, 0, 432, 0, 528, 3603, 753, 66, 826, 0, 768, 0, 720, 0
Offset: 2

Views

Author

Michel Marcus, Oct 28 2023

Keywords

Comments

A152454 is the irregular triangle in which row n lists the numbers whose proper divisors sum to n.

Examples

			A152454 begins as []; [4]; [9]; []; [6, 25]; [8]; [10, 49]...
so sequence begins 0, 0, 0, 0, 19, 0, 39, ...
		

Crossrefs

Programs

  • PARI
    lista(nn) = my(v = vector(nn, k, [])); forcomposite (i=1, nn^2, my(x=sigma(i)-i); if (x <=  nn, v[x] = concat(v[x], i));); vector(nn-1, k, k++; if (#v[k], vecmax(v[k]) - vecmin(v[k])));

Formula

a(n) = A135244(n) - A070015(n).
a(A005114(n)) = a(A057709(n)) = 0.

A358199 a(n) is the least integer whose sum of the i-th powers of the proper divisors is a prime for 1 <= i <= n, or -1 if no such number exists.

Original entry on oeis.org

4, 4, 981, 8829, 8829, 122029105, 2282761881
Offset: 1

Views

Author

Jean-Marc Rebert, Nov 02 2022

Keywords

Examples

			4 is a term since the strict divisors of 4 are {1, 2}, 1^1 + 2^1 = 3 and 1^2 + 2^2 = 5 are prime and no number < 4 has this property.
		

Crossrefs

Subsequence of A037020.

Programs

  • PARI
    card(n)=my(c=1,s=0);s=sigma(n)-n;while(isprime(s),c++;s=sigma(n,c)-n^c);c--
    a(n)=my(x=0);for(k=1,+oo,x=card(k);if(x>=n,return(k)))
    
  • Python
    from itertools import count
    from math import prod
    from sympy import isprime, factorint
    def A358199(n):
        for m in count(2):
            f = factorint(m).items()
            if all(map(isprime,(prod((p**((e+1)*i)-1)//(p**i-1) for p,e in f) - m**i for i in range(1,n+1)))):
                return m # Chai Wah Wu, Nov 15 2022
Previous Showing 11-13 of 13 results.