cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-34 of 34 results.

A275329 a(n) = (2+[n/2])*n!/((1+[n/2])*[n/2]!^2).

Original entry on oeis.org

2, 2, 3, 9, 8, 40, 25, 175, 84, 756, 294, 3234, 1056, 13728, 3861, 57915, 14300, 243100, 53482, 1016158, 201552, 4232592, 764218, 17577014, 2912168, 72804200, 11143500, 300874500, 42791040, 1240940160, 164812365, 5109183315, 636438060, 21002455980, 2463251010
Offset: 0

Views

Author

Peter Luschny, Sep 10 2016

Keywords

Crossrefs

Programs

  • Maple
    a := n -> (2+iquo(n,2))*n!/((1+iquo(n,2))*iquo(n, 2)!^2):
    seq(a(n), n=0..34);
  • Sage
    def A275329():
        x, n, k = 1, 1, 2
        while True:
            yield x * k
            if is_odd(n):
                x *= n
            else:
                k += 1
                x = (x<<2)//(n+2)
            n += 1
    a = A275329(); print([next(a) for _ in range(37)])

Formula

a(n) = A056040(n)*(2+[n/2])/(1+[n/2]).
a(n) = A057977(n)*A008619(n+2).
a(2*n+1) = (n+2)*binomial(2*n+1, n+1) = A189911(2*n+1).
a(2*n-3) = n*binomial(2*n-3, n-1) = A097070(n) for n>=2.
a(2*n+2) = (n+3)*binomial(2*n+2, n+1)/(n+2) = A038665(n).
Sum_{n>=0} 1/a(n) = 16/3 - 40*Pi/(9*sqrt(3)) + 4*Pi^2/9. - Amiram Eldar, Aug 20 2022

A329965 a(n) = ((1+n)*floor(1+n/2))*(n!/floor(1+n/2)!)^2.

Original entry on oeis.org

1, 2, 6, 72, 240, 7200, 25200, 1411200, 5080320, 457228800, 1676505600, 221298739200, 821966745600, 149597947699200, 560992303872000, 134638152929280000, 508633022177280000, 155641704786247680000, 591438478187741184000, 224746621711341649920000
Offset: 0

Views

Author

Peter Luschny, Dec 04 2019

Keywords

Crossrefs

Programs

  • Maple
    A329965 := n -> ((1+n)*floor(1+n/2))*(n!/floor(1+n/2)!)^2:
    seq(A329965(n), n=0..19);
  • Mathematica
    ser := Series[(1 - Sqrt[1 - 4 x^2] - 4 x^2 (1 - x - Sqrt[1 - 4 x^2]))/(2 x^2 (1 - 4 x^2)^(3/2)), {x, 0, 22}]; Table[n! Coefficient[ser, x, n], {n, 0, 20}]
    Table[(1+n)Floor[1+n/2](n!/Floor[1+n/2]!)^2,{n,0,30}] (* Harvey P. Dale, Oct 01 2023 *)
  • Python
    from fractions import Fraction
    def A329965():
        x, n = 1, Fraction(1)
        while True:
            yield int(x)
            m = n if n % 2 else 4/(n+2)
            n += 1
            x *= m * n
    a = A329965(); [next(a) for i in range(36)]

Formula

a(n) = n!*A212303(n+1).
a(n) = (n+1)!*A057977(n).
a(n) = A093005(n+1)*A262033(n)^2.
a(n) = A093005(n+1)*A329964(n).
a(2*n) = A052510(n) (n >= 0).
a(2*n+1) = A123072(n+1) (n >= 0).
a(n) = n! [x^n] (1 - sqrt(1 - 4*x^2) - 4*x^2*(1 - x - sqrt(1 - 4*x^2)))/(2*x^2*(1 - 4*x^2)^(3/2)).

A080390 Least x such that gcd(A001405(x+1), A001405(x)) = n.

Original entry on oeis.org

1, 5, 14, 27, 34, 11, 62, 183, 98, 39, 142, 107, 220, 69, 44, 495, 322, 143, 436, 139, 482, 637, 574, 119, 674, 233, 782, 55, 898, 29, 1146, 4063, 230, 441, 174, 467, 1516, 493, 662, 239, 1762, 377, 2020, 175, 764, 781, 2302, 2543, 2596, 949, 968, 207, 3126, 1241
Offset: 1

Views

Author

Labos Elemer, Mar 12 2003

Keywords

Crossrefs

Programs

  • Mathematica
    f[x_] := GCD[Binomial[x+1, Floor[x+1/2]], Binomial[x, Floor[x/2]]] t=Table[0, {257}]; Do[s=f[n]; If[s<258&&t[[s]]==0, t[[s]]=n], {n, 1, 10000}]; t

Formula

a(n) = Min{x; A057977(x)=n}.

A359648 Triangle read by rows. T(n, k) = (n!)^2 / (k! * (n - k)! * (floor(n/2)!)^2 * (floor(n/2) + 1)).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 9, 9, 3, 2, 8, 12, 8, 2, 10, 50, 100, 100, 50, 10, 5, 30, 75, 100, 75, 30, 5, 35, 245, 735, 1225, 1225, 735, 245, 35, 14, 112, 392, 784, 980, 784, 392, 112, 14, 126, 1134, 4536, 10584, 15876, 15876, 10584, 4536, 1134, 126
Offset: 0

Views

Author

Peter Luschny, Jan 09 2023

Keywords

Examples

			Triangle T(n, k) starts:
[0]   1;
[1]   1,    1;
[2]   1,    2,    1;
[3]   3,    9,    9,     3;
[4]   2,    8,   12,     8,     2;
[5]  10,   50,  100,   100,    50,    10;
[6]   5,   30,   75,   100,    75,    30,     5;
[7]  35,  245,  735,  1225,  1225,   735,   245,   35;
[8]  14,  112,  392,   784,   980,   784,   392,  112,   14;
[9] 126, 1134, 4536, 10584, 15876, 15876, 10584, 4536, 1134, 126;
		

Crossrefs

Cf. A057977, A063549, A240558 (row sums), A000007 (alternating row sums).

Programs

  • Maple
    T := proc(n, k) n!^2 / (k! * (n - k)! * iquo(n,2)!^2 * (iquo(n,2) + 1)) end:
    for n from 0 to 9 do seq(T(n, k), k = 0..n) od;

Formula

T(n, k) = binomial(n, k) * A057977(n).
Previous Showing 31-34 of 34 results.