A326967
Number of sets of subsets of {1..n} where every covered vertex is the unique common element of some subset of the edges.
Original entry on oeis.org
2, 4, 10, 92, 38362, 4020654364, 18438434849260080818, 340282363593610212050791236025945013956, 115792089237316195072053288318104625957065868613454666314675263144628100544274
Offset: 0
The a(0) = 2 through a(2) = 10 sets of subsets:
{} {} {}
{{}} {{}} {{}}
{{1}} {{1}}
{{},{1}} {{2}}
{{},{1}}
{{},{2}}
{{1},{2}}
{{},{1},{2}}
{{1},{2},{1,2}}
{{},{1},{2},{1,2}}
The case without empty edges is
A326965.
Sets of subsets whose dual is a weak antichain are
A326969.
-
tmQ[eds_]:=Union@@Select[Intersection@@@Rest[Subsets[eds]],Length[#]==1&]==Union@@eds;
Table[Length[Select[Subsets[Subsets[Range[n]]],tmQ[#]&]],{n,0,3}]
A327058
Number of pairwise intersecting set-systems covering n vertices whose dual is a weak antichain.
Original entry on oeis.org
1, 1, 1, 3, 155
Offset: 0
The a(0) = 1 through a(3) = 3 set-systems:
{} {{1}} {{12}} {{123}}
{{12}{13}{23}}
{{12}{13}{23}{123}}
Covering intersecting set-systems are
A305843.
The BII-numbers of these set-systems are the intersection of
A326910 and
A326966.
The non-covering version is
A327059.
The unlabeled multiset partition version is
A327060.
-
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],Intersection[#1,#2]=={}&],Union@@#==Range[n]&&stableQ[dual[#],SubsetQ]&]],{n,0,3}]
A327011
Number of unlabeled sets of subsets covering n vertices where every vertex is the unique common element of some subset of the edges, also called unlabeled covering T_1 sets of subsets.
Original entry on oeis.org
2, 2, 4, 32, 2424
Offset: 0
Non-isomorphic representatives of the a(0) = 1 through a(2) = 4 sets of subsets:
{} {{1}} {{1},{2}}
{{}} {{},{1}} {{},{1},{2}}
{{1},{2},{1,2}}
{{},{1},{2},{1,2}}
Unlabeled covering sets of subsets are
A003181.
The same with T_0 instead of T_1 is
A326942.
The non-covering version is
A326951 (partial sums).
The case without empty edges is
A326974.
A327017
Number of non-isomorphic multiset partitions of weight n where every vertex, as a multiset of weight 1, is the multiset-meet of some subset of the edges.
Original entry on oeis.org
1, 1, 2, 4, 9, 19, 49, 115, 310, 830, 2383
Offset: 0
Non-isomorphic representatives of the a(1) = 1 through a(5) = 19 multiset partitions:
{1} {1}{1} {1}{11} {1}{111} {1}{1111}
{1}{2} {1}{1}{1} {1}{1}{11} {1}{1}{111}
{1}{2}{2} {1}{2}{12} {1}{11}{11}
{1}{2}{3} {1}{2}{22} {1}{12}{22}
{1}{1}{1}{1} {1}{2}{122}
{1}{1}{2}{2} {1}{2}{222}
{1}{2}{2}{2} {1}{1}{1}{11}
{1}{2}{3}{3} {1}{1}{2}{22}
{1}{2}{3}{4} {1}{2}{2}{12}
{1}{2}{2}{22}
{1}{2}{3}{23}
{1}{2}{3}{33}
{1}{1}{1}{1}{1}
{1}{1}{2}{2}{2}
{1}{2}{2}{2}{2}
{1}{2}{2}{3}{3}
{1}{2}{3}{3}{3}
{1}{2}{3}{4}{4}
{1}{2}{3}{4}{5}
Cf.
A007716,
A059523,
A326961,
A326965,
A326967,
A326972,
A326974,
A326976,
A326977,
A326979,
A327012.
A327019
Number of non-isomorphic set-systems of weight n whose dual is a (strict) antichain.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 5, 7, 15, 26, 61
Offset: 0
Non-isomorphic representatives of the a(1) = 1 through a(8) = 15 multiset partitions:
{1} {1}{2} {1}{2}{3} {1}{2}{12} {1}{2}{3}{23} {12}{13}{23}
{1}{2}{3}{4} {1}{2}{3}{4}{5} {1}{2}{13}{23}
{1}{2}{3}{123}
{1}{2}{3}{4}{34}
{1}{2}{3}{4}{5}{6}
.
{1}{23}{24}{34} {12}{13}{24}{34}
{3}{12}{13}{23} {2}{13}{14}{234}
{1}{2}{3}{13}{23} {1}{2}{13}{24}{34}
{1}{2}{3}{24}{34} {1}{2}{3}{14}{234}
{1}{2}{3}{4}{234} {1}{2}{3}{23}{123}
{1}{2}{3}{4}{5}{45} {1}{2}{3}{4}{1234}
{1}{2}{3}{4}{5}{6}{7} {1}{2}{34}{35}{45}
{1}{4}{23}{24}{34}
{2}{3}{12}{13}{23}
{1}{2}{3}{4}{12}{34}
{1}{2}{3}{4}{24}{34}
{1}{2}{3}{4}{35}{45}
{1}{2}{3}{4}{5}{345}
{1}{2}{3}{4}{5}{6}{56}
{1}{2}{3}{4}{5}{6}{7}{8}
Cf.
A007716,
A059523,
A283877,
A293993,
A326961,
A326965,
A326974,
A326976,
A326977,
A326979,
A327012,
A327018.
Comments